-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathread_me.txt
38 lines (17 loc) · 2.26 KB
/
read_me.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
1.KmdPlus
This module contains a class for treating kernel mean descriptor (KMD), and a function for generating descriptors with summary statistics. KMD is a general class of materials descriptors, motivated by the machine learning theory of kernel mean embedding. Unlike ordinary descriptors, the kernel mean embedding can retain all information about the distribution of component features in the vectorization process. This module can be readily used generically to create the kernel mean descriptors for any mixture systems. The function for the inverse translation of the kernel mean descriptors is also implemented in this module.
2.How to use KmdPlus.
Set KmdPlus file as current directory, then open tutorial.ipynb with jupyter notebook for starting a tutorial which explains how to use the KmdPlus module (KmdPlus.py).
3.Dependencies of KmdPlus:
pandas version = 1.5.1
numpy version = 1.23.5
pymatgen version = 2022.11.7
scipy version = 1.8.1
qpsolvers version = 2.6.0
quadprog version = 0.1.11
For tutorial:
matplotlib version = 3.6.2
scikit-learn version = 1.1.3
Environment of author:
Python 3.9.12
macOS Ventura 13.2.1