UV 4 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.
- Author : MikroE Team
- Date : Dec 2019.
- Type : I2C type
Reads all configured measurements from selected channels and logs results every 500ms.
- MikroSDK.Board
- MikroSDK.Log
- Click.UV4
uv4_cfg_setup
Config Object Initialization function.
void uv4_cfg_setup ( uv4_cfg_t *cfg );
uv4_init
Initialization function.
err_t uv4_init ( uv4_t *ctx, uv4_cfg_t *cfg );
uv4_default_cfg
Click Default Configuration function.
void uv4_default_cfg ( uv4_t *ctx );
uv4_write_reg
This function write one byte of data to given address.
err_t uv4_write_reg ( uv4_t* ctx, const uint8_t reg_address, const uint8_t transfer_data );
uv4_read_reg
This function reads determined number of bytes from given address.
err_t uv4_read_reg ( uv4_t* ctx, uint8_t reg_address, uint8_t* data_out, uint8_t inc_en, uint8_t n_bytes );
uv4_write_param_data
This function writes one byte of data in parameter table.
err_t uv4_write_param_data ( uv4_t* ctx, uint8_t param_address, uint8_t transfer_data );
Initializes driver, performs reset command and enables selected channels.
void application_init ( void )
{
log_cfg_t log_cfg;
uv4_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
uv4_cfg_setup( &cfg );
UV4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
uv4_init( &uv4, &cfg );
uv4_default_cfg( &uv4 );
}
Reads all configured measurements from selected channels and logs results every 500ms.
void application_task ( void )
{
uint8_t cnt;
uint8_t pom = 1;
uint32_t data_r[ 6 ];
uv4_read_measurements( &uv4, &data_r[ 0 ] );
for ( cnt = 0; cnt < 6; cnt++ )
{
if ( uv4.config_byte & pom )
{
switch ( uv4.optical_data[ cnt ] )
{
case UV4_OPT_FUNC_SMALL_IR:
{
log_printf( &logger, "Small IR: " );
break;
}
case UV4_OPT_FUNC_MEDIUM_IR:
{
log_printf( &logger, "Medium IR: " );
break;
}
case UV4_OPT_FUNC_LARGE_IR:
{
log_printf( &logger, "Large IR: " );
break;
}
case UV4_OPT_FUNC_WHITE:
{
log_printf( &logger, "White : " );
break;
}
case UV4_OPT_FUNC_LARGE_WHITE:
{
log_printf( &logger, "Large White: " );
break;
}
case UV4_OPT_FUNC_UV:
{
log_printf( &logger, "UV: " );
break;
}
case UV4_OPT_FUNC_UV_DEEP:
{
log_printf( &logger, "UV-Deep: " );
break;
}
default:
{
break;
}
}
log_printf( &logger, "%d\r\n", data_r[ cnt ] );
}
pom <<= 1;
}
Delay_ms ( 500 );
}
This Click board can be interfaced and monitored in two ways:
- Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
- UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.