Proteus-e Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.
- Author : Stefan Filipovic
- Date : Sep 2024.
- Type : UART type
This example demonstrates the use of Proteus-e Click board by processing data from a connected BT device.
- MikroSDK.Board
- MikroSDK.Log
- Click.Proteuse
proteuse_cfg_setup
Config Object Initialization function.
void proteuse_cfg_setup ( proteuse_cfg_t *cfg );
proteuse_init
Initialization function.
err_t proteuse_init ( proteuse_t *ctx, proteuse_cfg_t *cfg );
proteuse_default_cfg
Click Default Configuration function.
err_t proteuse_default_cfg ( proteuse_t *ctx );
proteuse_send_cmd
This function sends a desired command packet from the Click context object.
void proteuse_send_cmd ( proteuse_t *ctx );
proteuse_read_event
This function reads an event packet from the ring buffer and stores it in the Click context object.
err_t proteuse_read_event ( proteuse_t *ctx );
proteuse_get_user_setting
This function reads data from the desired user settings index and stores it in the Click context event packet object.
err_t proteuse_get_user_setting ( proteuse_t *ctx, uint8_t set_idx );
Initializes the driver, resets and configures the Click board, and reads the device info.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
proteuse_cfg_t proteuse_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
proteuse_cfg_setup( &proteuse_cfg );
PROTEUSE_MAP_MIKROBUS( proteuse_cfg, MIKROBUS_1 );
if ( UART_ERROR == proteuse_init( &proteuse, &proteuse_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( PROTEUSE_ERROR == proteuse_default_cfg ( &proteuse ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_printf( &logger, ">> Get device info.\r\n" );
if ( PROTEUSE_OK == proteuse_get_user_setting ( &proteuse, PROTEUSE_SET_IDX_FS_DEVICE_INFO ) )
{
log_printf( &logger, " < OS version: 0x%.2X%.2X\r\n",
( uint16_t ) proteuse.evt_pkt.payload[ 2 ],
( uint16_t ) proteuse.evt_pkt.payload[ 1 ] );
log_printf( &logger, " Build code: 0x%.2X%.2X%.2X%.2X\r\n",
( uint16_t ) proteuse.evt_pkt.payload[ 6 ],
( uint16_t ) proteuse.evt_pkt.payload[ 5 ],
( uint16_t ) proteuse.evt_pkt.payload[ 4 ],
( uint16_t ) proteuse.evt_pkt.payload[ 3 ] );
log_printf( &logger, " Package variant: 0x%.2X%.2X\r\n",
( uint16_t ) proteuse.evt_pkt.payload[ 8 ],
( uint16_t ) proteuse.evt_pkt.payload[ 7 ] );
log_printf( &logger, " Chip ID: 0x%.2X%.2X%.2X%.2X\r\n\n",
( uint16_t ) proteuse.evt_pkt.payload[ 12 ],
( uint16_t ) proteuse.evt_pkt.payload[ 11 ],
( uint16_t ) proteuse.evt_pkt.payload[ 10 ],
( uint16_t ) proteuse.evt_pkt.payload[ 9 ] );
}
log_printf( &logger, ">> Get FW version.\r\n" );
if ( PROTEUSE_OK == proteuse_get_user_setting ( &proteuse, PROTEUSE_SET_IDX_FS_FW_VERSION ) )
{
log_printf( &logger, " < FW version: %u.%u.%u\r\n\n",
( uint16_t ) proteuse.evt_pkt.payload[ 3 ],
( uint16_t ) proteuse.evt_pkt.payload[ 2 ],
( uint16_t ) proteuse.evt_pkt.payload[ 1 ] );
}
log_printf( &logger, ">> Get BT MAC.\r\n" );
if ( PROTEUSE_OK == proteuse_get_user_setting ( &proteuse, PROTEUSE_SET_IDX_FS_BTMAC ) )
{
log_printf( &logger, " < BT MAC: %.2X:%.2X:%.2X:%.2X:%.2X:%.2X\r\n\n",
( uint16_t ) proteuse.evt_pkt.payload[ 6 ],
( uint16_t ) proteuse.evt_pkt.payload[ 5 ],
( uint16_t ) proteuse.evt_pkt.payload[ 4 ],
( uint16_t ) proteuse.evt_pkt.payload[ 3 ],
( uint16_t ) proteuse.evt_pkt.payload[ 2 ],
( uint16_t ) proteuse.evt_pkt.payload[ 1 ] );
}
log_printf( &logger, ">> Set device name to \"%s\".\r\n", ( char * ) DEVICE_NAME );
if ( PROTEUSE_OK == proteuse_set_user_setting ( &proteuse, PROTEUSE_SET_IDX_RF_DEVICE_NAME,
DEVICE_NAME, strlen ( DEVICE_NAME ) ) )
{
log_printf( &logger, " < Request received, settings set successfully\r\n\n" );
}
log_printf( &logger, ">> Get device name.\r\n" );
if ( PROTEUSE_OK == proteuse_get_user_setting ( &proteuse, PROTEUSE_SET_IDX_RF_DEVICE_NAME ) )
{
log_printf( &logger, " < Device name: \"%s\"\r\n\n", &proteuse.evt_pkt.payload[ 1 ] );
}
log_info( &logger, " Application Task " );
}
Reads and parses all the received event packets and displays them the USB UART. All incoming data messages received from the connected device will be echoed back.
void application_task ( void )
{
if ( PROTEUSE_OK == proteuse_read_event ( &proteuse ) )
{
proteuse_parse_event ( &proteuse );
}
}
We recommend using the WE Bluetooth LE Terminal smartphone application for the test.
This Click board can be interfaced and monitored in two ways:
- Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
- UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.