Skip to content

Latest commit

 

History

History

pressure17

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Pressure 17 Click

Pressure 17 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.


Click Library

  • Author : Stefan Filipovic
  • Date : Dec 2021.
  • Type : I2C type

Software Support

Example Description

This example demonstrates the use of Pressure 17 Click board by reading and displaying the pressure and temperature data.

Example Libraries

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Pressure17

Example Key Functions

  • pressure17_cfg_setup Config Object Initialization function.
void pressure17_cfg_setup ( pressure17_cfg_t *cfg );
  • pressure17_init Initialization function.
err_t pressure17_init ( pressure17_t *ctx, pressure17_cfg_t *cfg );
  • pressure17_default_cfg Click Default Configuration function.
err_t pressure17_default_cfg ( pressure17_t *ctx );
  • pressure17_get_int_pin This function returns the INT pin logic state.
uint8_t pressure17_get_int_pin ( pressure17_t *ctx );
  • pressure17_read_data This function checks if the data is ready and then reads the pressure and temperature raw data and converts them to millibar and Celsius respectfully.
err_t pressure17_read_data ( pressure17_t *ctx, float *pressure, float *temperature );
  • pressure17_write_register This function writes a data byte to the selected register by using I2C serial interface.
err_t pressure17_write_register ( pressure17_t *ctx, uint8_t reg, uint8_t data_in );

Application Init

Initializes the driver and performs the Click default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    pressure17_cfg_t pressure17_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    pressure17_cfg_setup( &pressure17_cfg );
    PRESSURE17_MAP_MIKROBUS( pressure17_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == pressure17_init( &pressure17, &pressure17_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( PRESSURE17_ERROR == pressure17_default_cfg ( &pressure17 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

Application Task

Waits for the data ready interrupt and then reads the pressure [mbar] and temperature [C] data and displays the results on the USB UART approximately every 200ms.

void application_task ( void )
{
    if ( !pressure17_get_int_pin ( &pressure17 ) )
    {
        float pressure, temperature;
        if ( PRESSURE17_OK == pressure17_read_data ( &pressure17, &pressure, &temperature ) )
        {
            log_printf ( &logger, " Pressure: %.2f mbar\r\n Temperature: %.2f C\r\n\n", pressure, temperature );
        }
    }
}

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
  • UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.

Additional Notes and Information

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.