Buck 20 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.
- Author : Stefan Filipovic
- Date : Dec 2022.
- Type : SPI type
This example demonstrates the use of Buck 20 Click by changing the output voltage.
- MikroSDK.Board
- MikroSDK.Log
- Click.Buck20
buck20_cfg_setup
Config Object Initialization function.
void buck20_cfg_setup ( buck20_cfg_t *cfg );
buck20_init
Initialization function.
err_t buck20_init ( buck20_t *ctx, buck20_cfg_t *cfg );
buck20_set_wiper_1
This function sets wiper 1 to desired value.
err_t buck20_set_wiper_1 ( buck20_t *ctx, uint16_t data_in );
buck20_enable_device
This function enables the buck device by setting the RST pin to high logic state.
void buck20_enable_device ( buck20_t *ctx );
buck20_disable_device
This function disables the buck device by setting the RST pin to low logic state.
void buck20_disable_device ( buck20_t *ctx );
Initializes the driver and enables the device.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
buck20_cfg_t buck20_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
buck20_cfg_setup( &buck20_cfg );
BUCK20_MAP_MIKROBUS( buck20_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == buck20_init( &buck20, &buck20_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
buck20_set_wiper_1 ( &buck20, BUCK20_WIPER_ZERO_SCALE );
buck20_enable_device ( &buck20 );
log_info( &logger, " Application Task " );
}
Changes the output voltage every 3 seconds and displays on the USB UART the digipot wiper position, as well as an approximate buck R1 and voltage output.
void application_task ( void )
{
static uint16_t digipot_wiper = BUCK20_WIPER_ZERO_SCALE;
float buck_r1_kohm, buck_vout;
if ( BUCK20_OK == buck20_set_wiper_1 ( &buck20, digipot_wiper ) )
{
buck_r1_kohm = BUCK20_RESISTOR_R6_KOHM +
( float ) ( BUCK20_DIGIPOT_MAX_KOHM * digipot_wiper ) / BUCK20_WIPER_FULL_SCALE;
buck_vout = BUCK20_BUCK_VREF + ( buck_r1_kohm * BUCK20_BUCK_VREF ) / BUCK20_BUCK_R2_KOHM;
log_printf( &logger, " Digipot wiper position: %u\r\n", digipot_wiper );
log_printf( &logger, " Approximate R1 (Digipot+R6): %.2f kOhm\r\n", buck_r1_kohm );
log_printf( &logger, " Approximate buck voltage output: %.2f V\r\n\n", buck_vout );
digipot_wiper += 50;
if ( digipot_wiper > BUCK20_WIPER_FULL_SCALE )
{
digipot_wiper = BUCK20_WIPER_ZERO_SCALE;
}
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
An approximate buck R1 and VOUT values do not have to be 100% accurate for all wiper settings but they are a good reference point. VOUT ranges from ~1.3V to ~5V, and it is the most accurate around 3.3V since all passive components are set for that output.
This Click board can be interfaced and monitored in two ways:
- Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
- UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.