forked from snap-research/R2L
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoption.py
396 lines (374 loc) · 14.4 KB
/
option.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
from random import choice
from numpy.random import default_rng
from smilelogging.utils import check_path, strdict_to_dict, update_args
from smilelogging import argparser as parser
parser.add_argument('--config', is_config_file=True, help='config file path')
parser.add_argument("--expname", type=str, help='experiment name')
parser.add_argument("--basedir",
type=str,
default='./logs/',
help='where to store ckpts and logs')
parser.add_argument("--datadir",
type=str,
default='./data/llff/fern',
help='input data directory')
# training options
parser.add_argument("--netdepth",
type=int,
default=8,
help='layers in network')
parser.add_argument("--netwidth",
type=int,
default=256,
help='channels per layer')
parser.add_argument("--netdepth_fine",
type=int,
default=8,
help='layers in fine network')
parser.add_argument("--netwidth_fine",
type=int,
default=256,
help='channels per layer in fine network')
parser.add_argument(
"--N_rand",
type=int,
default=32 * 32 * 4,
help='batch size (number of random rays per gradient step)')
parser.add_argument("--lrate", type=float, default=5e-4, help='learning rate')
parser.add_argument("--lrate_decay",
type=int,
default=250,
help='exponential learning rate decay (in 1000 steps)')
parser.add_argument(
"--chunk",
type=int,
default=1024 * 32,
help=
'number of rays processed in parallel, decrease if running out of memory')
parser.add_argument(
"--netchunk",
type=int,
default=1024 * 64,
help=
'number of pts sent through network in parallel, decrease if running out of memory'
)
parser.add_argument("--no_batching",
action='store_true',
help='only take random rays from 1 image at a time')
parser.add_argument("--no_reload",
action='store_true',
help='do not reload weights from saved ckpt')
parser.add_argument(
"--ft_path",
type=str,
default=None,
help='specific weights npy file to reload for coarse network')
# rendering options
parser.add_argument("--N_samples",
type=int,
default=64,
help='number of coarse samples per ray')
parser.add_argument("--N_importance",
type=int,
default=0,
help='number of additional fine samples per ray')
parser.add_argument("--perturb",
type=float,
default=1.,
help='set to 0. for no jitter, 1. for jitter')
parser.add_argument("--perturb_test",
type=float,
default=0,
help='set to 0. for no jitter, 1. for jitter')
parser.add_argument("--use_viewdirs",
action='store_true',
help='use full 5D input instead of 3D')
parser.add_argument("--i_embed",
type=int,
default=0,
help='set 0 for default positional encoding, -1 for none')
parser.add_argument(
"--multires",
type=int,
default=10,
help='log2 of max freq for positional encoding (3D location)')
parser.add_argument(
"--multires_views",
type=int,
default=4,
help='log2 of max freq for positional encoding (2D direction)')
parser.add_argument(
"--raw_noise_std",
type=float,
default=0.,
help='std dev of noise added to regularize sigma_a output, 1e0 recommended'
)
parser.add_argument(
"--render_only",
action='store_true',
help='do not optimize, reload weights and render out render_poses path')
parser.add_argument("--render_test",
action='store_true',
help='render the test set instead of render_poses path')
parser.add_argument(
"--render_factor",
type=float,
default=0,
help=
'downsampling factor to speed up rendering, set 4 or 8 for fast preview')
parser.add_argument(
"--scaling_factor",
type=float,
default=1,
help=
'factor to scale disparity outputs, set 1 for true disparity')
# training options
parser.add_argument("--precrop_iters",
type=int,
default=0,
help='number of steps to train on central crops')
parser.add_argument("--precrop_frac",
type=float,
default=.5,
help='fraction of img taken for central crops')
# dataset options
parser.add_argument("--dataset_type",
type=str,
default='llff',
help='options: llff / blender / deepvoxels')
parser.add_argument(
"--testskip",
type=int,
default=8,
help=
'will load 1/N images from test/val sets, useful for large datasets like deepvoxels'
)
# deepvoxels flags
parser.add_argument("--shape",
type=str,
default='greek',
help='options : armchair / cube / greek / vase')
# blender flags
parser.add_argument(
"--white_bkgd",
action='store_true',
help='set to render synthetic data on a white bkgd (always use for dvoxels)'
)
parser.add_argument(
"--half_res",
action='store_true',
help='load blender synthetic data at 400x400 instead of 800x800')
# llff flags
parser.add_argument("--factor",
type=int,
default=8,
help='downsample factor for LLFF images')
parser.add_argument(
"--no_ndc",
action='store_true',
help=
'do not use normalized device coordinates (set for non-forward facing scenes)'
)
parser.add_argument("--lindisp",
action='store_true',
help='sampling linearly in disparity rather than depth')
parser.add_argument("--spherify",
action='store_true',
help='set for spherical 360 scenes')
parser.add_argument(
"--llffhold",
type=int,
default=8,
help='will take every 1/N images as LLFF test set, paper uses 8')
# logging/saving options
parser.add_argument("--i_print",
type=int,
default=100,
help='frequency of console printout and metric loggin')
parser.add_argument("--i_img",
type=int,
default=500,
help='frequency of tensorboard image logging')
parser.add_argument("--i_weights",
type=int,
default=10000,
help='frequency of weight ckpt saving')
parser.add_argument("--i_testset",
type=int,
default=1000,
help='frequency of testset saving')
parser.add_argument("--i_video",
type=int,
default=10000,
help='frequency of render_poses video saving')
# R2L related
parser.add_argument('--model_name',
type=str,
default='R2L',
choices=['nerf', 'nerf_v3.2', 'R2L', 'DeLFT'])
parser.add_argument('--N_iters', type=int, default=200000)
parser.add_argument('--skips', type=str, default='4')
parser.add_argument('--D_head', type=int, default=4)
parser.add_argument('--n_sample_per_ray', type=int, default=192)
parser.add_argument('--encode_input', action='store_true')
parser.add_argument('--pretrained_ckpt', type=str, default='')
parser.add_argument('--test_pretrained', action="store_true")
parser.add_argument('--resume',
action="store_true",
help='if True, resume the optimizer')
parser.add_argument('--lw_kd', type=float, default=0.001)
parser.add_argument('--split_layer', type=int, default=-1)
parser.add_argument('--dropout_layer', type=str, default='')
parser.add_argument('--dropout_ratio', type=float, default=0.5)
parser.add_argument('--n_pose_video',
type=str,
default='40',
help='num of poses in rendering the video')
parser.add_argument('--n_pose_kd',
type=str,
default='100',
help='num of poses in rendering the video when using KD')
parser.add_argument('--video_tag', type=str, default='')
parser.add_argument('--video_poses_perturb', action="store_true")
parser.add_argument('--datadir_kd', type=str, default='')
parser.add_argument('--create_data_chunk', type=int, default=100)
parser.add_argument('--create_data', type=str, default='spiral_evenly_spaced')
parser.add_argument('--no_rand_focal',
dest='use_rand_focal',
action='store_false',
default=True,
help='use random focal when creating data')
parser.add_argument('--max_save', type=int, default=40000)
parser.add_argument(
'--i_update_data',
type=int,
default=1000000000,
help='interval of updating training data (changing pseudo data)')
parser.add_argument('--pseudo_ratio', type=float, default=-1.)
parser.add_argument('--trans_origin', type=str, default='')
parser.add_argument('--select_pixel_mode',
type=str,
default='rand_pixel',
choices=['rand_pixel', 'rand_patch'])
parser.add_argument('--freeze_pretrained', action='store_true')
parser.add_argument('--focal_scale', type=float, default=1.)
parser.add_argument(
'--data_mode',
type=str,
default='images',
choices=['images', 'rays'],
help=
'which data is used in training, sample rays from images or directly load rays'
)
parser.add_argument('--rm_existing_data',
action='store_true',
help='remove existing data when creating data')
parser.add_argument('--num_workers',
type=int,
default=8,
help='#cpus when loading data')
parser.add_argument('--hard_ratio',
type=str,
default='',
help='hard rays ratio in a batch; seperated by comma')
parser.add_argument('--hard_mul',
type=float,
default=1,
help='hard_mul * batch_size is the size of hard ray pool')
parser.add_argument('--use_residual', action='store_true')
parser.add_argument('--linear_tail', action='store_true')
parser.add_argument('--layerwise_netwidths', type=str, default='')
parser.add_argument('--layerwise_netwidths2', type=str, default='')
parser.add_argument('--render_iters',
type=int,
default=1,
help='the number of forwards when rendering one image')
parser.add_argument('--convert_to_onnx', action='store_true')
parser.add_argument(
'--benchmark',
action='store_true',
help=
'check inference speed (time of rendering a frame) with a trained model')
parser.add_argument('--use_bn', action='store_true')
parser.add_argument('--shuffle_input', action='store_true')
parser.add_argument('--kernel_size', type=int, default=1)
parser.add_argument('--padding', type=int, default=0)
parser.add_argument('--body_arch',
type=str,
default='conv',
choices=['conv', 'resblock'])
parser.add_argument('--lw_rgb', type=float, default=1)
parser.add_argument('--lw_rgb1', type=float, default=1)
parser.add_argument('--act',
type=str,
default='relu',
choices=['relu', 'lrelu'],
help='main activation func in a network')
parser.add_argument('--warmup_lr', type=str, default='')
parser.add_argument('--lpips_net', type=str, default='alex')
parser.add_argument(
'--pseudo_data_hold_ratio',
type=float,
default=0,
help=
'hold a part of pseudo data, not used for training, to control sample size'
)
parser.add_argument('--given_render_path_rays', type=str, default='')
parser.add_argument('--learn_depth',
type=str,
default='',
choices=['depth', 'surface'])
parser.add_argument('--save_depth',action='store_true')
parser.add_argument('--does_terminate',action='store_true')
parser.add_argument('--train_depth',action='store_true')
parser.add_argument('--lw_depth', type=float, default=0.1)
parser.add_argument('--save_intermediate_models', action='store_true')
parser.add_argument('--plucker', action='store_true')
# Create data
parser.add_argument('--teacher_ckpt', type=str)
parser.add_argument('--test_teacher', action='store_true')
# Try related features
parser.add_argument('--trial.ON', action='store_true')
parser.add_argument('--trial.body_arch',
type=str,
default='mlp',
choices=['mlp', 'resmlp'])
parser.add_argument('--trial.res_scale', type=float, default=1.)
parser.add_argument('--trial.n_learnable',
type=int,
default=2,
help='num of learnable layers')
parser.add_argument('--trial.inact',
default='relu',
choices=['none', 'relu', 'lrelu'],
help='the within activation func in a block')
parser.add_argument('--trial.outact',
default='none',
choices=['none', 'relu', 'lrelu'],
help='the output activation func in a block')
parser.add_argument('--trial.n_block',
type=int,
default=-1,
help='num of block in network body')
parser.add_argument('--trial.near', type=float, default=-1)
parser.add_argument('--trial.far', type=float, default=-1)
args = parser.parse_args()
if args.video_tag == '':
args.video_tag = f'pose{args.n_pose_video}'
def check_n_pose(n_pose):
if n_pose.lower() == 'none':
return None
if n_pose.isdigit():
return int(n_pose)
else:
return n_pose.split(',')
args.n_pose_kd = check_n_pose(args.n_pose_kd)
args.n_pose_video = check_n_pose(args.n_pose_video)
args.pretrained_ckpt = check_path(args.pretrained_ckpt)
if args.hard_ratio != '':
if ',' not in args.hard_ratio:
args.hard_ratio = float(args.hard_ratio)
else:
args.hard_ratio = [float(x) for x in args.hard_ratio.split(',')]
# easier for controlling irrelevant args
args = update_args(args)