-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathcfn_rec_test.m
87 lines (76 loc) · 2.77 KB
/
cfn_rec_test.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Loading network parametrs...
if( exist('load_net') == 0 )
load_net = 1;
end
if( load_net == 1 )
addpath('./caffe-master-jps/matlab');
path = './';
net_model = [path '/deploy_cfn_rec.prototxt'];
net_weights = ['cfn_rec.caffemodel'];
net = caffe.Net(net_model, net_weights, 'test');
load_net = 0;
end
caffe.set_mode_gpu();
crop_size = 225;
mean_value = single(reshape(repmat([104 117 123], 255*255, 1), 255, 255, 3));
db_path = '/path/to/imagenet/256x256/dataset';
caffe.open_dataset(db_path);
labels = [];
n = 20;
m = 20;
input = single(zeros(crop_size/3, crop_size/3, 27, m*n));
net.blob_vec(1).reshape([crop_size/3, crop_size/3 27 m*n]);
preds = [];
labels = [];
feats = [];
patch_size = crop_size/3;
labels = [];
preds = [];
cntr = 0;
J = single(zeros(256, 256,3));
while(1)
k = 1;
[data,labels_, l] = caffe.read_next_batch(n);
if( n ~= l )
break;
end
for j = 1 : n
img = single(data(:,:,:,j));% - mean_value;
%J(:,:,1) = integralImage(img(:,:,1))./(crop_size*crop_size);
%J(:,:,2) = integralImage(img(:,:,2))./(crop_size*crop_size);
%J(:,:,3) = integralImage(img(:,:,3))./(crop_size*crop_size);
for i = 1 : m
xys = randi(size(img,1)-crop_size,2,1);%([size(img,1) size(img,2)]-crop_size)/2+1;%
I = img(xys(1):xys(1)+crop_size-1, xys(2):xys(2)+crop_size-1,: );
for q = 1 : 3
for p = 1 : 3
patch_pos = ((q-1)*3 + p-1)*3+1:((q-1)*3 + p)*3;
I_ = I( (p-1)*patch_size+1:p*patch_size, (q-1)*patch_size+1:q*patch_size, : );
%mean_val = J(xys(1)+p*patch_size,xys(2)+q*patch_size,:) - ...
% J(xys(1)+(p-1)*patch_size+1,xys(2)+(q-1)*patch_size+1,: );
%mean_img = reshape(repmat([mean_val(1) mean_val(2) mean_val(3)],...
% patch_size*patch_size,1), [patch_size patch_size 3] );
I_(:,:,1) = I_(:,:,1) - mean(mean(I_(:,:,1)));
I_(:,:,2) = I_(:,:,2) - mean(mean(I_(:,:,2)));
I_(:,:,3) = I_(:,:,3) - mean(mean(I_(:,:,3)));
input( :,:, patch_pos, (j-1)*m + i ) = I_;
here = 1;
end
end
end
end
input_data = {input};
scores = net.forward(input_data);
preds_ = reshape(scores{1}, 1000, m, n) ;
preds_ = mean(preds_, 2);
[v,i] = max(preds_,[],1);
preds = [preds; i(:)-1];
labels = [labels; labels_'];
%disp([num2str(i-1) ' , ' num2str(labels_)]);
here = 1;
cntr = cntr + n;
if( mod(cntr,100)==0)
disp([num2str(cntr) ' : ' num2str(length(find( preds==labels ))*100/length(labels))]);
end
end