-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopen_ephys_IO.py
48 lines (32 loc) · 1.37 KB
/
open_ephys_IO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import OpenEphys
import numpy as np
import matplotlib.pylab as plt
def delete_noise(file_path, name, waveforms, timestamps):
to_delete = np.array([])
for wave in range(0, waveforms.shape[0]):
if np.ndarray.max(abs(waveforms[wave, :, :])) > 0.0025:
to_delete = np.append(to_delete, wave)
# print('these are deleted')
# print(to_delete)
# print(waveforms[to_delete[0], :, 0])
for spk in range(0, to_delete.shape[0]):
plt.plot(waveforms[to_delete[spk], :, 0])
plt.savefig(file_path + name + '_deleted_waves.png')
waveforms = np.delete(waveforms, to_delete, axis=0)
timestamps = np.delete(timestamps, to_delete)
return waveforms, timestamps
def get_data_spike(folder_path, file_path, name):
data = OpenEphys.load(file_path) # returns a dict with data, timestamps, etc.
timestamps = data['timestamps']
waveforms = data['spikes']
# print('{} waveforms were found in the spike file'.format(waveforms.shape[0]))
waveforms, timestamps = delete_noise(folder_path, name, waveforms, timestamps)
return waveforms, timestamps
def get_data_continuous(file_path):
data = OpenEphys.load(file_path)
signal = data['data']
signal = np.asanyarray(signal)
return signal
def get_events(file_path):
events = OpenEphys.load(file_path)
return events