-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknn.py
44 lines (32 loc) · 1.09 KB
/
knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
from collections import Counter
from sklearn import datasets
from sklearn.model_selection import train_test_split
from utils import euclidean_distance
class KNN:
def __init__(self, k=5):
self.k = k
def fit(self, X, Y):
self.X_train = X
self.Y_train = Y
def predict(self, X):
return [self.find_nearest_neighbors(x) for x in X]
def find_nearest_neighbors(self, x):
distances = [euclidean_distance(x, x_train) for x_train in self.X_train]
nearest_neighbors_idx = np.argsort(distances)[: self.k]
nearest_neighbors = [self.Y_train[i] for i in nearest_neighbors_idx]
return Counter(nearest_neighbors).most_common()[0][0]
def run():
dataset = datasets.load_iris()
X, y = dataset.data, dataset.target
X_train, X_test, Y_train, Y_test = train_test_split(
X, y, test_size=0.2, random_state=1
)
knn = KNN()
knn.fit(X_train, Y_train)
preds = knn.predict(X_test)
print(preds)
accuracy = sum(preds == Y_test) / len(preds)
print(accuracy)
if __name__ == "__main__":
run()