From 47c1e8ac5d61f91aa31c0ac294005c046a1f70f0 Mon Sep 17 00:00:00 2001 From: Markus Pichler Date: Thu, 11 Jul 2024 12:48:51 +0200 Subject: [PATCH] update token --- ehyd_tools/data_processing.py | 30 +++++++++++++-------------- ehyd_tools/synthetic_rainseries_v0.py | 2 +- 2 files changed, 16 insertions(+), 16 deletions(-) diff --git a/ehyd_tools/data_processing.py b/ehyd_tools/data_processing.py index 62ed43a..2accd06 100644 --- a/ehyd_tools/data_processing.py +++ b/ehyd_tools/data_processing.py @@ -41,11 +41,11 @@ def data_validation(series): first_index = ts.index[0].replace(day=1, month=1, hour=0, minute=0) if first_index not in series.index: - ts = pd.concat([pd.Series(index=[first_index], data=[np.NaN]), ts]) + ts = pd.concat([pd.Series(index=[first_index], data=[np.nan]), ts]) last_index = ts.index[-1].replace(day=31, month=12, hour=23, minute=59) if last_index not in ts.index: - ts = pd.concat([ts, pd.Series(index=[last_index], data=[np.NaN])]) + ts = pd.concat([ts, pd.Series(index=[last_index], data=[np.nan])]) if ts.index.has_duplicates: # very slow an large data sets ts = ts[~ts.index.duplicated()].copy() @@ -238,19 +238,19 @@ def create_statistics(series, availability, availability_cut=0.2): warn('ATTENTION: only very small data availability! The statistic may be not very meaningful.', EhydWarning) if (avail < 0.1).all(): return {} - sums[avail < 0.1] = np.NaN + sums[avail < 0.1] = np.nan else: - sums[avail < availability_cut] = np.NaN - - stats = {} - stats['maximum'] = sums.max() - stats['maximum_date'] = sums.idxmax() - stats['maximum_avail'] = avail.loc[sums.idxmax()] - - stats['minimum'] = sums.min() - stats['minimum_date'] = sums.idxmin() - stats['minimum_avail'] = avail.loc[sums.idxmin()] + sums[avail < availability_cut] = np.nan + + stats = { + 'maximum': sums.max(), + 'maximum_date': sums.idxmax(), + 'maximum_avail': avail.loc[sums.idxmax()], + 'minimum': sums.min(), + 'minimum_date': sums.idxmin(), + 'minimum_avail': avail.loc[sums.idxmin()], + 'mean': sums.mean(), + 'mean_avail': avail.mean() + } - stats['mean'] = sums.mean() - stats['mean_avail'] = avail.mean() return stats diff --git a/ehyd_tools/synthetic_rainseries_v0.py b/ehyd_tools/synthetic_rainseries_v0.py index fd0d545..d265cbf 100644 --- a/ehyd_tools/synthetic_rainseries_v0.py +++ b/ehyd_tools/synthetic_rainseries_v0.py @@ -13,7 +13,7 @@ def block_rain(idf_table, return_period, duration, interval=5): if isinstance(return_period, float): idf_table.columns = idf_table.columns.astype(float) if return_period not in idf_table.columns: - idf_table[return_period] = np.NaN + idf_table[return_period] = np.nan idf_table = idf_table.sort_index(axis=1) if any(idf_table.isna()):