-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlorentzian_embed_with_normalized_rank.py
231 lines (212 loc) · 8.53 KB
/
lorentzian_embed_with_normalized_rank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#!/usr/bin/env python3
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import torch as th
import numpy as np
import logging
import argparse
from torch.autograd import Variable
from collections import defaultdict as ddict
import torch.multiprocessing as mp
import lorentzian_model as model
import lorentzian_train_with_normalized_rank as train
import rsgd
from data import slurp
from rsgd import RiemannianSGD
from sklearn.metrics import average_precision_score
from scipy.stats import spearmanr
import gc
import sys
def ranking(types, model, distfn, data, order_rank = None):
lt = th.from_numpy(model.embedding())
embedding = Variable(lt, volatile=True)
ranks = []
ap_scores = []
norms = []
ordered_ranks = []
for s, s_types in types.items():
if order_rank is not None:
lts = lt[s]
ltsnorm = th.sum(lts * lts, dim=-1)
norms.append(float(ltsnorm[0]))
ordered_ranks.append(order_rank[data.objects[s]])
s_e = Variable(lt[s].expand_as(embedding), volatile=True)
_dists = model.dist()(s_e, embedding).data.cpu().numpy().flatten()
_dists[s] = 1e+12
_labels = np.zeros(embedding.size(0))
_dists_masked = _dists.copy()
_ranks = []
for o in s_types:
_dists_masked[o] = np.Inf
_labels[o] = 1
ap_scores.append(average_precision_score(_labels, -_dists))
for o in s_types:
d = _dists_masked.copy()
d[o] = _dists[o]
r = np.argsort(d)
_ranks.append(np.where(r == o)[0][0] + 1)
ranks += _ranks
rho = None
if order_rank is not None:
rho, pval = spearmanr(ordered_ranks,norms)
return np.mean(ranks), np.mean(ap_scores), rho
def control(queue, log, types, data, fout, distfn, nepochs, processes, dataset_name = "_", order_rank = None):
min_rank = (np.Inf, -1)
max_map = (0, -1)
max_rho = (-2, -1)
while True:
gc.collect()
msg = queue.get()
if msg is None:
for p in processes:
p.terminate()
break
else:
epoch, elapsed, loss, model = msg
if model is not None:
# save model to fout
th.save({
'model': model.state_dict(),
'epoch': epoch,
'objects': data.objects,
}, fout)
# compute embedding quality
if True:
mrank, mAP, rho = ranking(types, model, distfn, data, order_rank)
else:
mrank = np.Inf
mAP = 0
rho = None
if mrank < min_rank[0]:
min_rank = (mrank, epoch)
if mAP > max_map[0]:
max_map = (mAP, epoch)
if rho is not None:
if rho > max_rho[0]:
max_rho = (rho, epoch)
else:
rho = -2
log.info(
('eval: {'
'"epoch": %d, '
'"elapsed": %.2f, '
'"loss": %.3f, '
'"mean_rank": %.2f, '
'"mAP": %.4f, '
'"rho": %.4f, '
'"best_rank": %.2f, '
'"best_mAP": %.4f,'
'"best_rho": %.4f,') % (
epoch, elapsed, loss, mrank, mAP, rho, min_rank[0], max_map[0], max_rho[0])
)
th.save('"epoch": %d "mAP": %g, "mAP epoch": %d, "mean rank": %g, "mean rank epoch": %d, "rho": %g, "max rho": %d\n' % (epoch, max_map[0], max_map[1], min_rank[0], min_rank[1], max_rho[0], max_rho[1]), "logs/with_rank_current_results_%s_%d.txt" % (dataset_name, epoch))
else:
log.info(f'json_log: {{"epoch": {epoch}, "loss": {loss}, "elapsed": {elapsed}}}')
if epoch >= nepochs - 1:
log.info(
('results: {'
'"mAP": %g, '
'"mAP epoch": %d, '
'"mean rank": %g, '
'"mean rank epoch": %d'
'"rho": %g, '
'"rho epoch": %d, '
'}') % (
max_map[0], max_map[1], min_rank[0], min_rank[1], max_rho[0], max_rho[1])
)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train Poincare Embeddings')
parser.add_argument('-dim', help='Embedding dimension', type=int)
parser.add_argument('-dset', help='Dataset to embed', type=str)
parser.add_argument('-fout', help='Filename where to store model', type=str)
parser.add_argument('-rin', help='Filename with ranks', type=str)
parser.add_argument('-distfn', help='Distance function', type=str)
parser.add_argument('-lr', help='Learning rate', type=float)
parser.add_argument('-epochs', help='Number of epochs', type=int, default=200)
parser.add_argument('-batchsize', help='Batchsize', type=int, default=50)
parser.add_argument('-beta', help='Beta', type=float, default=0.01)
parser.add_argument('-lambdaparameter', help='Regularization parameter lambda', type=float, default=0.0)
parser.add_argument('-eta', help='Number of examples randomly chosen', type=int, default=150)
parser.add_argument('-negs', help='Number of negatives', type=int, default=20)
parser.add_argument('-nproc', help='Number of processes', type=int, default=5)
parser.add_argument('-ndproc', help='Number of data loading processes', type=int, default=2)
parser.add_argument('-eval_each', help='Run evaluation each n-th epoch', type=int, default=10)
parser.add_argument('-burnin', help='Duration of burn in', type=int, default=20)
parser.add_argument('-debug', help='Print debug output', action='store_true', default=False)
opt = parser.parse_args()
th.set_default_tensor_type('torch.FloatTensor')
if opt.debug:
log_level = logging.DEBUG
else:
log_level = logging.INFO
log = logging.getLogger('lorentzian-icml19')
logging.basicConfig(level=log_level, format='%(message)s', stream=sys.stdout)
idx, objects = slurp(opt.dset)
dataset_name = (opt.dset.split(".")[0]).replace("/", "_")
order_rank = {}
order_rank_file = open(opt.rin, "r")
for l in order_rank_file:
l_table = l.split(" : ")
order_rank[l_table[0]] = float(l_table[1])
order_rank_file.close()
print("Successfully loaded %s" % opt.rin)
# create adjacency list for evaluation
adjacency = ddict(set)
for i in range(len(idx)):
s, o, _ = idx[i]
adjacency[s].add(o)
adjacency = dict(adjacency)
max_possible_norm = 1
# setup Riemannian gradients for distances
opt.retraction = rsgd.euclidean_retraction
if opt.distfn == 'poincare':
distfn = model.PoincareDistance
opt.rgrad = rsgd.poincare_grad
elif opt.distfn == 'euclidean':
distfn = model.EuclideanDistance
opt.rgrad = rsgd.euclidean_grad
elif opt.distfn == 'dist_lorentz':
distfn = model.LorentzianDistance
opt.rgrad = rsgd.euclidean_grad
max_possible_norm = None
elif opt.distfn == 'transe':
distfn = model.TranseDistance
opt.rgrad = rsgd.euclidean_grad
else:
raise ValueError('Unknown distance function {opt.distfn}')
# initialize model and data
model, data, model_name, conf = model.SNGraphDataset.initialize(distfn, opt, idx, objects, max_norm=max_possible_norm)
# Build config string for log
conf = [
('distfn', '"{:s}"'),
('dim', '{:d}'),
('lr', '{:g}'),
('batchsize', '{:d}'),
('negs', '{:d}'),
] + conf
conf = ', '.join(['"{}": {}'.format(k, f).format(getattr(opt, k)) for k, f in conf])
log.info(f'json_conf: {{{conf}}}')
optimizer = th.optim.SGD(model.parameters(), lr = opt.lr, momentum=0.9)
# if nproc == 0, run single threaded, otherwise run Hogwild
if opt.nproc == 0:
train.train(model, data, optimizer, opt, log, 0)
else:
queue = mp.Manager().Queue()
model.share_memory()
processes = []
for rank in range(opt.nproc):
p = mp.Process(
target=train.train_mp,
args=(model, data, optimizer, opt, log, order_rank, rank + 1, queue)
)
p.start()
processes.append(p)
ctrl = mp.Process(
target=control,
args=(queue, log, adjacency, data, opt.fout, distfn, opt.epochs, processes,dataset_name, order_rank)
)
ctrl.start()
ctrl.join()