-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
52 lines (43 loc) · 1.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from flask import Flask, request, abort, jsonify
import numpy as np
import cv2
import base64
from tensorflow.keras.models import load_model
import tensorflow as tf
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=bool, default=False, help='set to True if want to use your gpu')
args = parser.parse_args()
print(args.gpu)
if args.gpu:
device = tf.device("/GPU:0")
else:
device = tf.device("/CPU:0")
def base64_to_arr(element): #converts base64 image to numpy array
img_code = base64.b64decode(element['img_code'])
np_arr = np.frombuffer(img_code, np.uint8)
return np_arr
def image_preprocessing(np_arr): #array resize, normalization and dimension expansion
img_arr = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
img_arr = cv2.resize(img_arr, (64, 64))
img_rgb = cv2.cvtColor(img_arr, cv2.COLOR_BGR2RGB).astype(np.float64)
img_rgb = img_rgb/255
final_img = np.expand_dims(img_rgb, axis=0)
return final_img
app = Flask(__name__)
classifier = load_model('dogcat_model_bak.h5')
@app.route('/predict', methods=['POST'])
def predict():
if not request.json:
abort(400)
predictions = []
for element in request.json["photos"]:
img = image_preprocessing(base64_to_arr(element))
with device:
prediction = classifier.predict(img, batch_size=None, steps=1)
predictions.append({'ID': element['ID'],
'cat_prob': str(1 - prediction[0,0]),
'dog_prob': str(prediction[0,0])})
return jsonify({'results': predictions}), 200
if __name__ == '__main__':
app.run()