-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnewTraingpt2.py
541 lines (468 loc) · 22.7 KB
/
newTraingpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
import torch
import torch.nn as nn
import torch.nn.functional as F
import inspect
import math
from dataclasses import dataclass
import time
import os
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
from hellaswag import render_example, iterate_examples
import torch._dynamo
torch._dynamo.config.suppress_errors = True
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4*config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4*config.n_embd , config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query , values projections for all head but in batch
self.c_attn = nn.Linear(config.n_embd, 3*config.n_embd)
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
self.n_head = config.n_head
self.n_embd = config.n_embd
self.register_buffer("bias", torch.tril(torch.ones(config.block_size , config.block_size)).view(1,1,config.block_size, config.block_size))
def forward(self,x):
B , T, C = x.size() # Batch size , sequence length, embedding dimension
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
qkv = self.c_attn(x)
q,k,v = qkv.split(self.n_embd, dim=2)
q = q.view(B , T, self.n_head, C//self.n_head).transpose(1,2) # (B , nh, T, hs)
# print(q.shape , "q" )
k = k.view(B , T, self.n_head, C//self.n_head).transpose(1,2) # (B , nh, T, hs)
v = v.view(B , T, self.n_head, C//self.n_head).transpose(1,2) # (B , nh, T, hs)
# att = (q @ k.transpose(-2,-1)) * (1.0 / math.sqrt(k.size(-1)))
# att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
# att = F.softmax(att, dim=-1)
# y = att @ v # (B , nh , T, T) x (B , nh, T, hs) -> (B, nh, T, hs)
y = F.scaled_dot_product_attention(q,k,v, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B , T , C) # re-assemble all head outputs side by side
# output projection
y = self.c_proj(y)
return y
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self , x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size :int = 1024
vocab_size : int = 58257
n_layer : int = 12
n_head : int = 12
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size , config.n_embd),
wpe = nn.Embedding(config.block_size , config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Weight sharing
self.transformer.wte.weight = self.lm_head.weight
# init params
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std=0.02
if hasattr(module, "NONOGPT_SCALE_INIT"):
std *= (2*self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx , targets=None):
# idxus is if shape (B, T)
B , T = idx.size()
assert T<= self.config.block_size, f"Cannot forward sequence of lenth {T}, block size"
# forward the token and positition embedding
pos = torch.arange(0,T,dtype=torch.long, device=idx.device) # shape (T)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T , n_embed)
tok_emb = self.transformer.wte(idx) # position embeddings of shape (B , T, n_embed)
# print(idx.shape)
# print(tok_emb.shape)
x = pos_emb + tok_emb
for block in self.transformer.h:
x = block(x)
# forward the final layernorm and time classifier
x = self.transformer.ln_f(x)
# print(x.shape , "x from transformer")
# print(x.shape , "x")
logits = self.lm_head(x) # (B , T , vocab_size)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits , loss
@classmethod
def from_pretrained(cls, model_type):
"""Loads pretrained GPT-2 model weights from huggingfacve"""
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
# assert model_type in {'gpt-2', 'gpt2_medium', 'gpt2-large', 'gpt2-xl'}
from transformers import GPT2LMHeadModel
print("loading weights from pretrained gpt: %s" % model_type)
# n_;ater. n_head and n_embd are determined from model_type
config_args = {
'gpt2': dict(n_layer=12,n_head = 12, n_embd = 768), # 124M parameters
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
}[model_type]
config_args['vocab_size'] = 50257 # always 50257 for GPT model
config_args['block_size'] = 1024
# create a from-scratch initialized minGPT model
config = GPTConfig(**config_args)
model = GPT(config)
sd = model.state_dict()
sd_keys = sd.keys()
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer not param
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
# copy while ensuring all of the parameters are aligned and match in names and shapes
sd_keys_hf = sd_hf.keys()
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
# this means that we have to transpose these weights when we import them
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
for k in sd_keys_hf:
if any(k.endswith(w) for w in transposed):
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
# vanilla copy over the other parameters
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k])
return model
def configure_optimizer(self, weight_decay, learning_rate, device):
# start with all of the candiddate parameters that require grad
param_dict = {pn : p for pn , p in self.named_parameters()}
param_dict = {pn : p for pn , p in param_dict.items() if p.requires_grad}
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nondecay_params = [p for n , p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params' : decay_params, 'weight_decay' : weight_decay},
{'params' : nondecay_params, 'weight_decay' : 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nondecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nondecay_params)}, with {num_nodecay_params:,} parameters")
fused_avaliable = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_avaliable and device == "cuda"
if master_process:
print(f"using fused adam : {use_fused}" )
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
return optimizer
# --------------------------------------------------
import tiktoken
import numpy as np
def load_tokens(filename):
npt = np.load(filename)
npt = npt.astype(np.int32)
ptt = torch.tensor(npt, dtype=torch.long)
return ptt
class DataLoaderLite:
def __init__(self , B, T, process_rank, num_processes , split):
self.B = B
self.T = T
self.process_rank = process_rank
self.num_processes = num_processes
assert split in {'train', 'val'}
# get the share filenames
data_root = "edu_fineweb10B"
shards = os.listdir(data_root)
shards = [s for s in shards if split in s]
shards = sorted(shards)
shards = [os.path.join(data_root, s) for s in shards]
self.shards = shards
assert len(shards) > 0, f"no shards found for split {split}"
if master_process:
print(f"found {len(shards)} shards for split {split}")
# state , init at shard zero
self.reset()
# at init load tokens from disk and store them in memory
# with open('input.txt', 'r') as f:
# text = f.read()
# enc = tiktoken.get_encoding('gpt2')
# tokens = enc.encode(text)
# self.tokens = torch.tensor(tokens)
# print(f"load {len(self.tokens)} tokens")
# print(f"1 epoch = {len(self.tokens)//(B*T)} batches")
# #state
# self.current_position = self.B * self.T * self.process_rank
def reset(self):
# state, init at shard zero
self.current_shard = 0
self.tokens = load_tokens(self.shards[self.current_shard])
self.current_position = self.B * self.T * self.process_rank
def next_batch(self):
B , T = self.B , self.T
buf = self.tokens[self.current_position : self.current_position+B*T+1]
x = (buf[:-1]).view(B, T)
y = (buf[1:]).view(B , T)
self.current_position += B*T*self.num_processes
if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens):
self.current_shard = (self.current_shard + 1) % len(self.shards)
self.token = load_tokens(self.shards[self.current_shard])
self.current_position = B * T * self.process_rank
return x, y
def get_most_likely_row(tokens, mask, logits):
# evaluate the autoregressive loss at all positions
shift_logits = (logits[..., :-1, :]).contiguous()
shift_tokens = (tokens[..., 1:]).contiguous()
flat_shift_logits = shift_logits.view(-1, shift_logits.size(-1))
flat_shift_tokens = shift_tokens.view(-1)
shift_losses = F.cross_entropy(flat_shift_logits, flat_shift_tokens, reduction='none')
shift_losses = shift_losses.view(tokens.size(0), -1)
# now get the average loss just for the completion region (where mask == 1), in each row
shift_mask = (mask[..., 1:]).contiguous() # we must shift mask, so we start at the last prompt token
masked_shift_losses = shift_losses * shift_mask
# sum and divide by the number of 1s in the mask
sum_loss = masked_shift_losses.sum(dim=1)
avg_loss = sum_loss / shift_mask.sum(dim=1)
# now we have a loss for each of the 4 completions
# the one with the lowest loss should be the most likely
pred_norm = avg_loss.argmin().item()
return pred_norm
# Run the training loop
from torch.distributed import init_process_group, destroy_process_group
# set up DDP
# torchrun command set the env variables Rank , Local_Rank are world_s9ze
# ddp = int(os.environ.get('RANK', -1)) !=1 # is this a ddp run ?
ddp = int(os.environ.get('RANK', -1)) != -1 # Corrected line
if ddp:
# Ensure CUDA is available
assert torch.cuda.is_available(), "For now we need CUDA for DDP"
init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
master_process = ddp_rank == 0 # This process will do logging, checkpointing, etc.
else:
# Vanilla non-DDP run
ddp_rank = 0
ddp_local_rank = 0
ddp_world_size = 1
master_process = True
device = "cuda"
if torch.cuda.is_available():
device = "cuda"
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
device = "mps"
print(f"Using device: {device}")
device = "cuda" if device.startswith("cuda") else "cpu"
torch.manual_seed(1337)
if torch.cuda.is_available():
torch.cuda.manual_seed(1337)
enc = tiktoken.get_encoding("gpt2")
total_batch_size = 524288
B=64 # micro batch size
T=1024 # seq_len
assert total_batch_size % (B * T * ddp_world_size) == 0, "Make same total_batch_size is divisible by B * T"
grad_accum_steps = total_batch_size // (B * T * ddp_world_size)
if master_process:
print(f"Total desired batch_size: {total_batch_size}")
print(f"=> calculated gradient accumulation steps {grad_accum_steps}")
train_loader = DataLoaderLite(B=B, T=T,process_rank=ddp_rank, num_processes=ddp_world_size , split="train")
val_loader = DataLoaderLite(B=B , T=T, process_rank=ddp_rank, num_processes=ddp_world_size, split="val")
torch.set_float32_matmul_precision('high')
# Create model
model = GPT(GPTConfig(vocab_size=50304))
model.to(device)
use_compile = False
if use_compile:
model = torch.compile(model)
if ddp:
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module if ddp else model
warmup_steps = 715
max_steps = 19073
max_lr = 6e-4
min_lr = max_lr * 0.1
def get_lr(it):
if it < warmup_steps:
return max_lr * (it + 1)/ warmup_steps
if it>max_steps:
return min_lr
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
assert 0<=decay_ratio<=1
coeff = 0.5* (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (max_lr - min_lr)
# optimizer = model.configure_optimizer(weight_decay=0.1, learning_rate=6e-4, device=device)
optimizer = raw_model.configure_optimizer(weight_decay=0.1, learning_rate=6e-4, device=device)
log_dir = "log"
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"log.txt")
with open(log_file, "w") as f:
pass
for step in range(max_steps):
t0 = time.time()
last_step = (step == max_steps - 1)
if step % 250 == 0 or last_step:
model.eval()
val_loader.reset()
val_loss_accum = 0.0
val_loss_steps = 20
with torch.no_grad():
for _ in range(val_loss_steps):
x, y = val_loader.next_batch()
x, y = x.to(device), y.to(device)
with torch.autocast(device_type=device, dtype=torch.bfloat16):
logits, loss = model(x, y)
loss = loss / val_loss_steps
val_loss_accum += loss.detach()
if ddp:
dist.all_reduce(val_loss_accum, op=dist.ReduceOp.SUM)
val_loss_accum /= dist.get_world_size()
if master_process:
print(f"validation loss {val_loss_accum.item():.4f}")
with open(log_file, "a") as f:
f.write(f"{step} val {val_loss_accum.item():.4f}\n")
# if step > 0 and (step % 1000 == 0 or last_step):
# # optionally write model checkpoints
# checkpoint_path = os.path.join(log_dir, f"model_{step:05d}.pt")
# checkpoint = {
# 'model': raw_model.state_dict(),
# 'config': raw_model.config,
# 'step': step,
# 'val_loss': val_loss_accum.item()
# }
# # you might also want to add optimizer.state_dict() and
# # rng seeds etc., if you wanted to more exactly resume training
# torch.save(checkpoint, checkpoint_path)
# # once in a while evaluate hellaswag
if (step % 100 == 0 or last_step) and (not use_compile):
num_correct_norm = 0
num_total = 0
for i, example in enumerate(iterate_examples("val")):
# only process examples where i % ddp_world_size == ddp_rank
if i % ddp_world_size != ddp_rank:
continue
# render the example into tokens and labels
_, tokens, mask, label = render_example(example)
tokens = tokens.to(device)
mask = mask.to(device)
# get the logits
with torch.no_grad():
with torch.autocast(device_type=device, dtype=torch.bfloat16):
logits, loss = model(tokens)
pred_norm = get_most_likely_row(tokens, mask, logits)
num_total += 1
num_correct_norm += int(pred_norm == label)
# reduce the stats across all processes
if ddp:
num_total = torch.tensor(num_total, dtype=torch.long, device=device)
num_correct_norm = torch.tensor(num_correct_norm, dtype=torch.long, device=device)
dist.all_reduce(num_total, op=dist.ReduceOp.SUM)
dist.all_reduce(num_correct_norm, op=dist.ReduceOp.SUM)
num_total = num_total.item()
num_correct_norm = num_correct_norm.item()
acc_norm = num_correct_norm / num_total
if master_process:
print(f"HellaSwag accuracy: {num_correct_norm}/{num_total}={acc_norm:.4f}")
with open(log_file, "a") as f:
f.write(f"{step} hella {acc_norm:.4f}\n")
# once in a while generate from the model (except step 0, which is noise)
# disabled because torch.compile throws a scary error i can't solve rn
# if you disable torch.compile this code works fine
# if ((step > 0 and step % 100 == 0) or last_step) and (not use_compile):
# model.eval()
# num_return_sequences = 4
# max_length = 32
# tokens = enc.encode("Hello, I'm a language model,")
# tokens = torch.tensor(tokens, dtype=torch.long)
# tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1)
# xgen = tokens.to(device)
# sample_rng = torch.Generator(device=device)
# sample_rng.manual_seed(42 + ddp_rank)
# # Ensure xgen is on the correct device and of the correct dtype
# assert xgen.device == device, "xgen is not on the correct device"
# assert xgen.dtype == torch.long, "xgen is not of dtype torch.long"
# while xgen.size(1) < max_length:
# # forward the model to get the logits
# with torch.no_grad():
# # Check if model is on the correct device
# assert next(model.parameters()).device == device, "Model is not on the correct device"
# # with torch.autocast(device_type=device_type, dtype=torch.bfloat16):
# logits, loss = model(xgen) # (B, T, vocab_size)
# # take the logits at the last position
# logits = logits[:, -1, :] # (B, vocab_size)
# # get the probabilities
# probs = F.softmax(logits, dim=-1)
# # do top-k sampling of 50 (huggingface pipeline default)
# # topk_probs here becomes (5, 50), topk_indices is (5, 50)
# topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
# # select a token from the top-k probabilities
# # note: multinomial does not demand the input to sum to 1
# ix = torch.multinomial(topk_probs, 1, generator=sample_rng) # (B, 1)
# # gather the corresponding indices
# xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
# # append to the sequence
# xgen = torch.cat((xgen, xcol), dim=1)
# # print the generated text
# for i in range(num_return_sequences):
# tokens = xgen[i, :max_length].tolist()
# decoded = enc.decode(tokens)
# print(f"rank {ddp_rank} sample {i}: {decoded}")
# Tranning loop
model.train()
optimizer.zero_grad()
loss_accum = 0.0
for micro_step in range(grad_accum_steps):
x , y = train_loader.next_batch()
x, y = x.to(device) , y.to(device)
if ddp:
model.require_backward_grad_sync = (micro_step == grad_accum_steps - 1)
with torch.autocast(device_type=device, dtype=torch.bfloat16):
logits , loss = model(x , y)
loss = loss/grad_accum_steps
loss_accum += loss.detach()
loss.backward()
if ddp:
dist.all_reduce(loss_accum, op=dist.ReduceOp.AVG)
norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
lr = get_lr(step)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
optimizer.step()
torch.cuda.synchronize()
t1 = time.time()
dt = t1 - t0# time difference in mi;eseconds
tokens_processed = train_loader.B * train_loader.T * grad_accum_steps * ddp_world_size
tokens_pre_sec = tokens_processed / dt
if master_process:
print(f"Step {step:4d} | loss {loss_accum.item():.6f} | lr {lr:.4e} | norm : {norm:.4f}| dt : dt {dt*1000:2f}ms , tok/sec:{tokens_pre_sec}")
if ddp:
destroy_process_group()
import sys; sys.exit(0)