-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmnist_mil_trainer.py
159 lines (120 loc) · 5.21 KB
/
mnist_mil_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from datasets.mnist_bags import MNISTBags
from torch.utils.data import DataLoader
from layers import *
from models import *
import wandb
import pandas as pd
class Trainer:
def __init__(self, config, trial) -> None:
self.config = config
self.trial = trial
if self.config["wandb"]:
run = wandb.init(
# Set the project where this run will be logged
project=self.config["project_name"] + " good",
# Track hyperparameters and run metadata
config=self.config)
def _get_data(self):
trainset = MNISTBags(target_number=self.config["tgt_num"],
bag_size=self.config["bag_size"],
num_bag=self.config["train_size"],
pos_per_bag=self.config["pos_per_bag"],
seed=self.config["seed"],
train=True
)
testset = MNISTBags(target_number=self.config["tgt_num"],
bag_size=self.config["bag_size"],
num_bag=self.config["test_size"],
pos_per_bag=self.config["pos_per_bag"],
seed=self.config["seed"],
train=False
)
train_loader = DataLoader(trainset, batch_size=self.config["batch_size"], shuffle=True)
test_loader = DataLoader(testset, batch_size=self.config["batch_size"], shuffle=False)
return train_loader, test_loader
def _get_model(self):
model = CIFARModel(d_model=self.config["d_model"],
n_heads=self.config["n_heads"],
update_steps=self.config["update_steps"],
dropout=self.config["dropout"],
mode=self.config["mode"],
scale=self.config["scale"],
num_pattern=self.config['num_pattern'])
return model.cuda()
def _get_opt(self):
return torch.optim.AdamW(self.model.parameters(), lr=self.config["lr"], weight_decay=0.001)
def _get_cri(self):
return torch.nn.BCEWithLogitsLoss()
def test_epoch(self, loader):
total_loss = 0.0
total_cor, total_sample = 0, 0
total_step = 0
with torch.no_grad():
for x, y in loader:
total_sample += x.size(0)
total_step += 1
x, y = x.float().cuda(), y.float().cuda()
pred = self.model(x)
loss = self.cri(pred, y)
output = (pred>0.5).float()
total_cor += (output == y).float().sum()
total_loss += loss.item()
return total_loss/total_step, total_cor/total_sample
def train_epoch(self, loader):
total_loss = 0.0
total_cor, total_sample = 0, 0
total_step = 0
for x, y in loader:
total_step += 1
total_sample += x.size(0)
self.opt.zero_grad()
x, y = x.float().cuda(), y.float().cuda()
pred = self.model(x)
loss = self.cri(pred, y)
loss.backward()
self.opt.step()
output = (pred>0.5).float()
total_cor += (output == y).float().sum()
total_loss += loss.item()
return total_loss/total_step, total_cor/total_sample
def train(self):
train_loader, test_loader = self._get_data()
self.model = self._get_model()
self.opt = self._get_opt()
self.cri = self._get_cri()
best_test_acc = -1
data_log = {
'train loss':[],
'train acc':[],
'test loss':[],
'test acc':[],
'epoch':[],
'model':[]
}
self.sche = torch.optim.lr_scheduler.CosineAnnealingLR(self.opt, self.config["epoch"], eta_min=0, last_epoch=-1, verbose=False)
for epoch in range(1, self.config["epoch"]+1):
train_loss, train_acc = self.train_epoch(train_loader)
test_loss, test_acc = self.test_epoch(test_loader)
self.sche.step()
data_log['train loss'].append(train_loss)
data_log['test loss'].append(test_loss)
data_log['train acc'].append(train_acc.item())
data_log['test acc'].append(test_acc.item())
data_log['epoch'].append(epoch)
data_log['model'].append(self.config['mode'])
if test_acc >= best_test_acc:
best_test_acc = test_acc
if self.config["wandb"]:
wandb.log({
"step": epoch,
"train loss": train_loss,
"train acc": train_acc.item()*100,
"test loss": test_loss,
"test acc": test_acc.item()*100
}, step=epoch)
if self.config["wandb"]:
wandb.log({"best test acc": best_test_acc})
wandb.log({"logs": data_log})
if self.config["wandb"]:
wandb.finish()
return data_log