-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspecial_losses.py
206 lines (128 loc) · 5.2 KB
/
special_losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch.nn as nn
import torch
import numpy as np
import scipy.ndimage.filters as filters
from torch.nn.parameter import Parameter
def get_dirac(size):
dirac = np.zeros(((size, size)))
dirac[size//2, size//2] = 1
return dirac
def get_gaussian2d(size, sigma):
ret = filters.gaussian_filter(get_dirac(size), sigma)
return ret
def gaussian_glaplace(size, sigma):
return filters.gaussian_laplace(get_dirac(size), sigma)
class ConvFilter(nn.Module):
def __init__(self, num_outputs, size, weights):
super().__init__()
self.num_outputs = num_outputs
weights = np.expand_dims(weights, axis=0)
weights= np.stack([weights]*self.num_outputs)
self.weights =torch.FloatTensor(weights)
self.padding = (size - 1) // 2
self.weights = Parameter(self.weights, requires_grad=False)
def forward(self, x):
x = nn.functional.conv2d(x, (self.weights), groups=self.num_outputs, padding=self.padding )
return x
class GaussianFilter(ConvFilter):
def __init__(self, num_outputs, size, sigma):
weights = get_gaussian2d(size, sigma)
super(GaussianFilter, self).__init__(num_outputs, size, weights)
class GLFilter(ConvFilter):
def __init__(self, num_outputs, size, sigma):
weights = gaussian_glaplace(size, sigma)
super().__init__(num_outputs, size, weights)
def get_data(results):
results = results.data.cpu().numpy()
results = results[0, :, :, :]
if results.shape[0] == 1:
results = results[0, :, :]
else:
results = results.transpose([1, 2, 0])
return results.clip(0, 1)
class EdgeLoss(nn.Module):
def __init__(self):
super().__init__()
self.criterion = torch.nn.L1Loss()
num_input = 3
self.prefilter = GaussianFilter(3, 11, 1.5)
self.LoG = GLFilter(3, 11 , 1.5)
def forward(self, input, target):
input = self.prefilter(input)
target = self.prefilter(target)
input = self.LoG(input)
target = self.LoG(target)
return self.criterion(input, target)
class RelativeEdgeLoss(nn.Module):
def __init__(self):
super().__init__()
self.criterion = torch.nn.L1Loss()
num_input = 3
self.prefilter = GaussianFilter(3, 11, 1.5)
self.LoG = GLFilter(3, 11 , 1.5)
def forward(self, input, target):
base = target +.01
input = self.prefilter(input)
target = self.prefilter(target)
input = self.LoG(input)
target = self.LoG(target)
return self.criterion(input/base, target/base)
class RelativeL1(nn.Module):
def __init__(self):
super().__init__()
self.criterion = torch.nn.L1Loss()
def forward(self, input, target):
base = target +.01
return self.criterion(input/base, target/base)
class LossCombo(nn.Module):
def __init__(self, monitor_writer, *losses):
super().__init__()
self.monitor_writer = monitor_writer
pass
self.losses = []
self.losses_names = []
self.factors = []
for name, loss, factor in losses:
self.losses.append(loss)
self.losses_names.append(name)
self.factors.append(factor)
self.add_module(name, loss)
def multi_gpu(self):
pass
#self.losses = [nn.DataParallel(x) for x in self.losses]
def forward(self, input, target, additional_losses):
loss_results = []
for idx, loss in enumerate(self.losses):
loss_results.append(loss(input, target))
for name, loss_result, factor in zip(self.losses_names, loss_results, self.factors):
#print(loss_result)
self.monitor_writer.add_scalar(name, loss_result*factor)
for name, loss_result, factor in additional_losses:
loss_result = loss_result.mean()
#print(loss_result)
self.monitor_writer.add_scalar(name, loss_result*factor)
total_loss = sum([factor*loss_result for factor, loss_result in zip(self.factors, loss_results)]) + sum([factor*loss_result.mean() for name, loss_result, factor in additional_losses])
self.monitor_writer.add_scalar("total_loss", total_loss)
return total_loss
class MonitorWriter:
def __init__(self, writer, tensorboard_graph_every, tensorboard_every, denoiser):
self.tensorboard_graph_every = tensorboard_graph_every
self.tensorboard_every = tensorboard_every
self.writer_count = 0
self.writer = writer
self.draw_prefix = ""
self.train = True
self.denoiser = denoiser
def next_step(self):
self.writer_count += 1
def set_prefix(self, prefix):
self.draw_prefix = prefix
def add_scalar(self, name, loss):
if self.train and self.writer_count % self.tensorboard_graph_every == 0:
name = self.draw_prefix+ name
value = loss.data.cpu().numpy()
self.writer.add_scalar(name, value, self.writer_count)
value = float(value)
def add_image(self, name, img):
if self.train and self.writer_count % self.tensorboard_every == 0:
self.writer.add_image(self.draw_prefix + name, img, self.writer_count)