-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluation_NV.py
366 lines (298 loc) · 14.8 KB
/
evaluation_NV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import cv2
import os, sys
import numpy as np
import random
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import models
import math
from render_utils import *
from run_nerf_helpers import *
from load_llff import load_nvidia_data
import skimage
from skimage.metrics import structural_similarity
from skimage.metrics import peak_signal_noise_ratio
def im2tensor(image, imtype=np.uint8, cent=1., factor=1./2.):
return torch.Tensor((image / factor - cent)
[:, :, :, np.newaxis].transpose((3, 2, 0, 1)))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
np.random.seed(1)
DEBUG = False
def config_parser():
import configargparse
parser = configargparse.ArgumentParser()
parser.add_argument('--config', is_config_file=True,
help='config file path')
parser.add_argument("--expname", type=str,
help='experiment name')
parser.add_argument("--basedir", type=str, default='./logs/',
help='where to store ckpts and logs')
parser.add_argument("--datadir", type=str, default='./data/llff/fern',
help='input data directory')
parser.add_argument("--render_lockcam_slowmo", action='store_true',
help='render fixed view + slowmo')
parser.add_argument("--render_slowmo_bt", action='store_true',
help='render space-time interpolation')
parser.add_argument("--render_bt", action='store_true',
help='render bullet time')
parser.add_argument("--image_size", type=int, default=272,
help='rescaled resolution for training')
# training options
parser.add_argument("--netdepth", type=int, default=8,
help='layers in network')
parser.add_argument("--netwidth", type=int, default=256,
help='channels per layer')
parser.add_argument("--netdepth_fine", type=int, default=8,
help='layers in fine network')
parser.add_argument("--netwidth_fine", type=int, default=256,
help='channels per layer in fine network')
parser.add_argument("--N_rand", type=int, default=32*32*4,
help='batch size (number of random rays per gradient step)')
parser.add_argument("--lrate", type=float, default=5e-4,
help='learning rate')
parser.add_argument("--lrate_decay", type=int, default=300,
help='exponential learning rate decay (in 1000 steps)')
parser.add_argument("--chunk", type=int, default=1024*128,
help='number of rays processed in parallel, decrease if running out of memory')
parser.add_argument("--netchunk", type=int, default=1024*128,
help='number of pts sent through network in parallel, decrease if running out of memory')
parser.add_argument("--no_batching", action='store_true',
help='only take random rays from 1 image at a time')
parser.add_argument("--no_reload", action='store_true',
help='do not reload weights from saved ckpt')
parser.add_argument("--ft_path", type=str, default=None,
help='specific weights npy file to reload for coarse network')
parser.add_argument("--weight_net_width", type=int, default=128,
help='channels in weight network')
parser.add_argument("--dist_encoder_width", type=int, default=128,
help='channels in distribution encoder')
parser.add_argument("--dist_dim", type=int, default=128,
help='dimension of target latent distribution')
# rendering options
parser.add_argument("--N_samples", type=int, default=64,
help='number of coarse samples per ray')
parser.add_argument("--N_importance", type=int, default=0,
help='number of additional fine samples per ray')
parser.add_argument("--perturb", type=float, default=1.,
help='set to 0. for no jitter, 1. for jitter')
parser.add_argument("--use_viewdirs", action='store_true',
help='use full 5D input instead of 3D')
parser.add_argument("--i_embed", type=int, default=0,
help='set 0 for default positional encoding, -1 for none')
parser.add_argument("--multires", type=int, default=10,
help='log2 of max freq for positional encoding (3D location)')
parser.add_argument("--multires_views", type=int, default=4,
help='log2 of max freq for positional encoding (2D direction)')
parser.add_argument("--raw_noise_std", type=float, default=0.,
help='std dev of noise added to regularize sigma_a output, 1e0 recommended')
parser.add_argument("--render_test", action='store_true',
help='do not optimize, reload weights and render out render_poses path')
parser.add_argument("--render_factor", type=int, default=0,
help='downsampling factor to speed up rendering, set 4 or 8 for fast preview')
# dataset options
parser.add_argument("--dataset_type", type=str, default='llff',
help='options: llff / blender / deepvoxels')
parser.add_argument("--testskip", type=int, default=8,
help='will load 1/N images from test/val sets, useful for large datasets like deepvoxels')
## blender flags
parser.add_argument("--white_bkgd", action='store_true',
help='set to render synthetic data on a white bkgd (always use for dvoxels)')
## llff flags
parser.add_argument("--factor", type=int, default=8,
help='downsample factor for LLFF images')
parser.add_argument("--no_ndc", action='store_true',
help='do not use normalized device coordinates (set for non-forward facing scenes)')
parser.add_argument("--lindisp", action='store_true',
help='sampling linearly in disparity rather than depth')
parser.add_argument("--spherify", action='store_true',
help='set for spherical 360 scenes')
parser.add_argument("--llffhold", type=int, default=8,
help='will take every 1/N images as LLFF test set, paper uses 8')
parser.add_argument("--target_idx", type=int, default=10,
help='target_idx')
parser.add_argument("--num_extra_sample", type=int, default=512,
help='num_extra_sample')
parser.add_argument("--use_motion_mask", action='store_true',
help='use motion segmentation mask for hard-mining data-driven initialization')
parser.add_argument("--lambda_depth", type=float, default=0.05,
help='weight of depth loss')
parser.add_argument("--lambda_target_flow", type=float, default=0.02,
help='weight of warming up flow loss')
parser.add_argument("--lambda_reg_flow", type=float, default=0.1,
help='weight of flow regularization loss')
parser.add_argument("--lambda_cons", type=float, default=0.1,
help='weight of flow consistence loss')
parser.add_argument("--lambda_dist", type=float, default=0.01,
help='weight of distribution loss')
parser.add_argument("--lambda_w", type=float, default=0.5,
help='weight of occlusion weight loss')
parser.add_argument("--decay_iteration", type=int, default=50,
help='data driven priors decay iteration * 1000')
parser.add_argument("--start_frame", type=int, default=0)
parser.add_argument("--end_frame", type=int, default=50)
parser.add_argument("--save_epoch", type=int, default=10000,
help='frequency of weight ckpt saving')
return parser
def calculate_psnr(img1, img2, mask):
# img1 and img2 have range [0, 1]
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
mask = mask.astype(np.float64)
num_valid = np.sum(mask) + 1e-8
mse = np.sum((img1 - img2)**2 * mask) / num_valid
if mse == 0:
return 0 #float('inf')
return 10 * math.log10(1./mse)
def calculate_ssim(img1, img2, mask):
'''calculate SSIM
the same outputs as MATLAB's
img1, img2: [0, 1]
'''
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
_, ssim_map = structural_similarity(img1, img2, multichannel=True, full=True)
num_valid = np.sum(mask) + 1e-8
return np.sum(ssim_map * mask) / num_valid
def evaluation(epoch=0):
parser = config_parser()
args = parser.parse_args()
# Load data
if args.dataset_type == 'llff':
target_idx = args.target_idx
images, poses, bds, render_poses = load_nvidia_data(args.datadir,
args.start_frame, args.end_frame,
args.factor,
target_idx=target_idx,
recenter=True, bd_factor=.9,
spherify=args.spherify,
final_height=args.image_size)
hwf = poses[0,:3,-1]
poses = poses[:,:3,:4]
print('Loaded llff', images.shape, render_poses.shape, hwf, args.datadir)
# if not isinstance(i_test, list):
i_test = []
i_val = [] #i_test
i_train = np.array([i for i in np.arange(int(images.shape[0])) if
(i not in i_test and i not in i_val)])
print('DEFINING BOUNDS')
if args.no_ndc:
near = np.percentile(bds[:, 0], 5) * 0.9 #np.ndarray.min(bds) #* .9
far = np.percentile(bds[:, 1], 95) * 1.1 #np.ndarray.max(bds) #* 1.
else:
near = 0.
far = 1.
print('NEAR FAR', near, far)
else:
print('ONLY SUPPORT LLFF!!!!!!!!')
sys.exit()
# Cast intrinsics to right types
H, W, focal = hwf
H, W = int(H), int(W)
hwf = [H, W, focal]
# Create log dir and copy the config file
basedir = args.basedir
expname = args.expname
os.makedirs(os.path.join(basedir, expname), exist_ok=True)
f = os.path.join(basedir, expname, 'args.txt')
with open(f, 'w') as file:
for arg in sorted(vars(args)):
attr = getattr(args, arg)
file.write('{} = {}\n'.format(arg, attr))
if args.config is not None:
f = os.path.join(basedir, expname, 'config.txt')
with open(f, 'w') as file:
file.write(open(args.config, 'r').read())
# Create nerf model
render_kwargs_train, render_kwargs_test, \
start, grad_vars, optimizer = create_nerf(args)
epoch = start - 1
print('Test result from epoch: ', epoch)
bds_dict = {
'near' : near,
'far' : far,
}
render_kwargs_train.update(bds_dict)
render_kwargs_test.update(bds_dict)
num_img = float(images.shape[0])
poses = torch.Tensor(poses).to(device)
print('poses',poses.shape)
with torch.no_grad():
model = models.PerceptualLoss(model='net-lin',net='alex',
use_gpu=True,version=0.1)
count = 0
total_psnr = 0.
total_ssim = 0.
total_lpips = 0.
t = time.time()
# for each time step
for img_i in i_train:
img_idx_embed = img_i/num_img * 2. - 1.0
# for each target viewpoint
single_count = 0
single_psnr = 0.
single_ssim = 0.
single_lpips = 0.
for camera_i in range(0, 12):
print(time.time() - t)
t = time.time()
print(img_i, camera_i)
if img_i % 12 == camera_i:
continue
c2w = poses[camera_i]
ret = render_test(img_idx_embed, 0,
num_img,
H, W, focal,
chunk=1024*16, c2w=c2w[:3,:4],
**render_kwargs_test)
rgb = ret['rgb_map_ref'].cpu().numpy()#.append(ret['rgb_map_ref'].cpu().numpy())
gt_img_path = os.path.join(args.datadir,
'images_eval',
'%05d'%img_i,
'cam%02d.jpg'%(camera_i + 1))
print('gt_img_path ', gt_img_path)
gt_img = cv2.imread(gt_img_path)[:, :, ::-1]
gt_img = cv2.resize(gt_img,
dsize=(rgb.shape[1], rgb.shape[0]),
interpolation=cv2.INTER_AREA)
gt_img = np.float32(gt_img) / 255
psnr = peak_signal_noise_ratio(gt_img, rgb)
ssim = structural_similarity(gt_img, rgb,
multichannel=True)
gt_img_0 = im2tensor(gt_img).cuda()
rgb_0 = im2tensor(rgb).cuda()
lpips = model.forward(gt_img_0, rgb_0)
lpips = lpips.item()
print(psnr, ssim, lpips)
single_psnr += psnr
single_ssim += ssim
single_lpips += lpips
single_count += 1
total_psnr += psnr
total_ssim += ssim
total_lpips += lpips
count += 1
smean_psnr = single_psnr / single_count
smean_ssim = single_ssim / single_count
smean_lpips = single_lpips / single_count
print('At view', img_i)
print(smean_psnr, smean_ssim, smean_lpips)
f_i = os.path.join(basedir, expname, 'eval_result_view.txt')
with open(f_i, 'a') as file:
file.write('####### At view=' + str(img_i) + '\n')
file.write('mean_psnr:' + str(smean_psnr) + ' mean_ssim:' + str(smean_ssim) + ' mean_lpips:' + str(
smean_lpips) + '\n')
mean_psnr = total_psnr / count
mean_ssim = total_ssim / count
mean_lpips = total_lpips / count
print('mean_psnr ', mean_psnr)
print('mean_ssim ', mean_ssim)
print('mean_lpips ', mean_lpips)
f_i = os.path.join(basedir, expname, 'eval_result.txt')
with open(f_i, 'a') as file:
file.write('####### Epoch='+str(epoch)+'\n')
file.write('mean_psnr:'+str(mean_psnr)+' mean_ssim:'+str(mean_ssim)+' mean_lpips:'+str(mean_lpips)+'\n')
if __name__=='__main__':
torch.set_default_tensor_type('torch.cuda.FloatTensor')
evaluation()