-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
68 lines (59 loc) · 1.61 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
from torch import nn
class Actor(nn.Module):
def __init__(self, state_dim):
super(Actor, self).__init__()
self.model = nn.Sequential(
nn.Linear(state_dim, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 16),
nn.ReLU(),
nn.Linear(16, 8),
nn.ReLU(),
nn.Linear(8, 1)
)
def forward(self, x):
x = self.model(torch.from_numpy(x).float())
x = torch.tanh(x)
x = (x + 1) / 2
return x
class Critic(nn.Module):
def __init__(self, state_dim):
super(Critic, self).__init__()
self.model = nn.Sequential(
nn.Linear(state_dim, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 16),
nn.ReLU(),
nn.Linear(16, 8),
nn.ReLU(),
nn.Linear(8, 1)
)
def forward(self, x):
x = self.model(torch.from_numpy(x).float())
x = torch.tanh(x)
x = x / 2
return x
class RhoNetwork(nn.Module):
def __init__(self, state_dim):
super().__init__()
self.model = nn.Sequential(
nn.Linear(state_dim, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 16),
nn.ReLU(),
nn.Linear(16, 8),
nn.ReLU(),
nn.Linear(8, 1)
)
def forward(self, x):
x = self.model(torch.from_numpy(x).float())
x = torch.tanh(x)
x = (x + 1) / 2
return x