forked from kangjianwei/LearningJDK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCountedCompleter.java
934 lines (866 loc) · 39.3 KB
/
CountedCompleter.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*
*
*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package java.util.concurrent;
import java.lang.invoke.MethodHandles;
import java.lang.invoke.VarHandle;
/**
* A {@link ForkJoinTask} with a completion action performed when
* triggered and there are no remaining pending actions.
* CountedCompleters are in general more robust in the
* presence of subtask stalls and blockage than are other forms of
* ForkJoinTasks, but are less intuitive to program. Uses of
* CountedCompleter are similar to those of other completion based
* components (such as {@link java.nio.channels.CompletionHandler})
* except that multiple <em>pending</em> completions may be necessary
* to trigger the completion action {@link #onCompletion(CountedCompleter)},
* not just one.
* Unless initialized otherwise, the {@linkplain #getPendingCount pending
* count} starts at zero, but may be (atomically) changed using
* methods {@link #setPendingCount}, {@link #addToPendingCount}, and
* {@link #compareAndSetPendingCount}. Upon invocation of {@link
* #tryComplete}, if the pending action count is nonzero, it is
* decremented; otherwise, the completion action is performed, and if
* this completer itself has a completer, the process is continued
* with its completer. As is the case with related synchronization
* components such as {@link Phaser} and {@link Semaphore}, these methods
* affect only internal counts; they do not establish any further
* internal bookkeeping. In particular, the identities of pending
* tasks are not maintained. As illustrated below, you can create
* subclasses that do record some or all pending tasks or their
* results when needed. As illustrated below, utility methods
* supporting customization of completion traversals are also
* provided. However, because CountedCompleters provide only basic
* synchronization mechanisms, it may be useful to create further
* abstract subclasses that maintain linkages, fields, and additional
* support methods appropriate for a set of related usages.
*
* <p>A concrete CountedCompleter class must define method {@link
* #compute}, that should in most cases (as illustrated below), invoke
* {@code tryComplete()} once before returning. The class may also
* optionally override method {@link #onCompletion(CountedCompleter)}
* to perform an action upon normal completion, and method
* {@link #onExceptionalCompletion(Throwable, CountedCompleter)} to
* perform an action upon any exception.
*
* <p>CountedCompleters most often do not bear results, in which case
* they are normally declared as {@code CountedCompleter<Void>}, and
* will always return {@code null} as a result value. In other cases,
* you should override method {@link #getRawResult} to provide a
* result from {@code join(), invoke()}, and related methods. In
* general, this method should return the value of a field (or a
* function of one or more fields) of the CountedCompleter object that
* holds the result upon completion. Method {@link #setRawResult} by
* default plays no role in CountedCompleters. It is possible, but
* rarely applicable, to override this method to maintain other
* objects or fields holding result data.
*
* <p>A CountedCompleter that does not itself have a completer (i.e.,
* one for which {@link #getCompleter} returns {@code null}) can be
* used as a regular ForkJoinTask with this added functionality.
* However, any completer that in turn has another completer serves
* only as an internal helper for other computations, so its own task
* status (as reported in methods such as {@link ForkJoinTask#isDone})
* is arbitrary; this status changes only upon explicit invocations of
* {@link #complete}, {@link ForkJoinTask#cancel},
* {@link ForkJoinTask#completeExceptionally(Throwable)} or upon
* exceptional completion of method {@code compute}. Upon any
* exceptional completion, the exception may be relayed to a task's
* completer (and its completer, and so on), if one exists and it has
* not otherwise already completed. Similarly, cancelling an internal
* CountedCompleter has only a local effect on that completer, so is
* not often useful.
*
* <p><b>Sample Usages.</b>
*
* <p><b>Parallel recursive decomposition.</b> CountedCompleters may
* be arranged in trees similar to those often used with {@link
* RecursiveAction}s, although the constructions involved in setting
* them up typically vary. Here, the completer of each task is its
* parent in the computation tree. Even though they entail a bit more
* bookkeeping, CountedCompleters may be better choices when applying
* a possibly time-consuming operation (that cannot be further
* subdivided) to each element of an array or collection; especially
* when the operation takes a significantly different amount of time
* to complete for some elements than others, either because of
* intrinsic variation (for example I/O) or auxiliary effects such as
* garbage collection. Because CountedCompleters provide their own
* continuations, other tasks need not block waiting to perform them.
*
* <p>For example, here is an initial version of a utility method that
* uses divide-by-two recursive decomposition to divide work into
* single pieces (leaf tasks). Even when work is split into individual
* calls, tree-based techniques are usually preferable to directly
* forking leaf tasks, because they reduce inter-thread communication
* and improve load balancing. In the recursive case, the second of
* each pair of subtasks to finish triggers completion of their parent
* (because no result combination is performed, the default no-op
* implementation of method {@code onCompletion} is not overridden).
* The utility method sets up the root task and invokes it (here,
* implicitly using the {@link ForkJoinPool#commonPool()}). It is
* straightforward and reliable (but not optimal) to always set the
* pending count to the number of child tasks and call {@code
* tryComplete()} immediately before returning.
*
* <pre> {@code
* public static <E> void forEach(E[] array, Consumer<E> action) {
* class Task extends CountedCompleter<Void> {
* final int lo, hi;
* Task(Task parent, int lo, int hi) {
* super(parent); this.lo = lo; this.hi = hi;
* }
*
* public void compute() {
* if (hi - lo >= 2) {
* int mid = (lo + hi) >>> 1;
* // must set pending count before fork
* setPendingCount(2);
* new Task(this, mid, hi).fork(); // right child
* new Task(this, lo, mid).fork(); // left child
* }
* else if (hi > lo)
* action.accept(array[lo]);
* tryComplete();
* }
* }
* new Task(null, 0, array.length).invoke();
* }}</pre>
*
* This design can be improved by noticing that in the recursive case,
* the task has nothing to do after forking its right task, so can
* directly invoke its left task before returning. (This is an analog
* of tail recursion removal.) Also, when the last action in a task
* is to fork or invoke a subtask (a "tail call"), the call to {@code
* tryComplete()} can be optimized away, at the cost of making the
* pending count look "off by one".
*
* <pre> {@code
* public void compute() {
* if (hi - lo >= 2) {
* int mid = (lo + hi) >>> 1;
* setPendingCount(1); // looks off by one, but correct!
* new Task(this, mid, hi).fork(); // right child
* new Task(this, lo, mid).compute(); // direct invoke
* } else {
* if (hi > lo)
* action.accept(array[lo]);
* tryComplete();
* }
* }}</pre>
*
* As a further optimization, notice that the left task need not even exist.
* Instead of creating a new one, we can continue using the original task,
* and add a pending count for each fork. Additionally, because no task
* in this tree implements an {@link #onCompletion(CountedCompleter)} method,
* {@code tryComplete} can be replaced with {@link #propagateCompletion}.
*
* <pre> {@code
* public void compute() {
* int n = hi - lo;
* for (; n >= 2; n /= 2) {
* addToPendingCount(1);
* new Task(this, lo + n/2, lo + n).fork();
* }
* if (n > 0)
* action.accept(array[lo]);
* propagateCompletion();
* }}</pre>
*
* When pending counts can be precomputed, they can be established in
* the constructor:
*
* <pre> {@code
* public static <E> void forEach(E[] array, Consumer<E> action) {
* class Task extends CountedCompleter<Void> {
* final int lo, hi;
* Task(Task parent, int lo, int hi) {
* super(parent, 31 - Integer.numberOfLeadingZeros(hi - lo));
* this.lo = lo; this.hi = hi;
* }
*
* public void compute() {
* for (int n = hi - lo; n >= 2; n /= 2)
* new Task(this, lo + n/2, lo + n).fork();
* action.accept(array[lo]);
* propagateCompletion();
* }
* }
* if (array.length > 0)
* new Task(null, 0, array.length).invoke();
* }}</pre>
*
* Additional optimizations of such classes might entail specializing
* classes for leaf steps, subdividing by say, four, instead of two
* per iteration, and using an adaptive threshold instead of always
* subdividing down to single elements.
*
* <p><b>Searching.</b> A tree of CountedCompleters can search for a
* value or property in different parts of a data structure, and
* report a result in an {@link
* java.util.concurrent.atomic.AtomicReference AtomicReference} as
* soon as one is found. The others can poll the result to avoid
* unnecessary work. (You could additionally {@linkplain #cancel
* cancel} other tasks, but it is usually simpler and more efficient
* to just let them notice that the result is set and if so skip
* further processing.) Illustrating again with an array using full
* partitioning (again, in practice, leaf tasks will almost always
* process more than one element):
*
* <pre> {@code
* class Searcher<E> extends CountedCompleter<E> {
* final E[] array; final AtomicReference<E> result; final int lo, hi;
* Searcher(CountedCompleter<?> p, E[] array, AtomicReference<E> result, int lo, int hi) {
* super(p);
* this.array = array; this.result = result; this.lo = lo; this.hi = hi;
* }
* public E getRawResult() { return result.get(); }
* public void compute() { // similar to ForEach version 3
* int l = lo, h = hi;
* while (result.get() == null && h >= l) {
* if (h - l >= 2) {
* int mid = (l + h) >>> 1;
* addToPendingCount(1);
* new Searcher(this, array, result, mid, h).fork();
* h = mid;
* }
* else {
* E x = array[l];
* if (matches(x) && result.compareAndSet(null, x))
* quietlyCompleteRoot(); // root task is now joinable
* break;
* }
* }
* tryComplete(); // normally complete whether or not found
* }
* boolean matches(E e) { ... } // return true if found
*
* public static <E> E search(E[] array) {
* return new Searcher<E>(null, array, new AtomicReference<E>(), 0, array.length).invoke();
* }
* }}</pre>
*
* In this example, as well as others in which tasks have no other
* effects except to {@code compareAndSet} a common result, the
* trailing unconditional invocation of {@code tryComplete} could be
* made conditional ({@code if (result.get() == null) tryComplete();})
* because no further bookkeeping is required to manage completions
* once the root task completes.
*
* <p><b>Recording subtasks.</b> CountedCompleter tasks that combine
* results of multiple subtasks usually need to access these results
* in method {@link #onCompletion(CountedCompleter)}. As illustrated in the following
* class (that performs a simplified form of map-reduce where mappings
* and reductions are all of type {@code E}), one way to do this in
* divide and conquer designs is to have each subtask record its
* sibling, so that it can be accessed in method {@code onCompletion}.
* This technique applies to reductions in which the order of
* combining left and right results does not matter; ordered
* reductions require explicit left/right designations. Variants of
* other streamlinings seen in the above examples may also apply.
*
* <pre> {@code
* class MyMapper<E> { E apply(E v) { ... } }
* class MyReducer<E> { E apply(E x, E y) { ... } }
* class MapReducer<E> extends CountedCompleter<E> {
* final E[] array; final MyMapper<E> mapper;
* final MyReducer<E> reducer; final int lo, hi;
* MapReducer<E> sibling;
* E result;
* MapReducer(CountedCompleter<?> p, E[] array, MyMapper<E> mapper,
* MyReducer<E> reducer, int lo, int hi) {
* super(p);
* this.array = array; this.mapper = mapper;
* this.reducer = reducer; this.lo = lo; this.hi = hi;
* }
* public void compute() {
* if (hi - lo >= 2) {
* int mid = (lo + hi) >>> 1;
* MapReducer<E> left = new MapReducer(this, array, mapper, reducer, lo, mid);
* MapReducer<E> right = new MapReducer(this, array, mapper, reducer, mid, hi);
* left.sibling = right;
* right.sibling = left;
* setPendingCount(1); // only right is pending
* right.fork();
* left.compute(); // directly execute left
* }
* else {
* if (hi > lo)
* result = mapper.apply(array[lo]);
* tryComplete();
* }
* }
* public void onCompletion(CountedCompleter<?> caller) {
* if (caller != this) {
* MapReducer<E> child = (MapReducer<E>)caller;
* MapReducer<E> sib = child.sibling;
* if (sib == null || sib.result == null)
* result = child.result;
* else
* result = reducer.apply(child.result, sib.result);
* }
* }
* public E getRawResult() { return result; }
*
* public static <E> E mapReduce(E[] array, MyMapper<E> mapper, MyReducer<E> reducer) {
* return new MapReducer<E>(null, array, mapper, reducer,
* 0, array.length).invoke();
* }
* }}</pre>
*
* Here, method {@code onCompletion} takes a form common to many
* completion designs that combine results. This callback-style method
* is triggered once per task, in either of the two different contexts
* in which the pending count is, or becomes, zero: (1) by a task
* itself, if its pending count is zero upon invocation of {@code
* tryComplete}, or (2) by any of its subtasks when they complete and
* decrement the pending count to zero. The {@code caller} argument
* distinguishes cases. Most often, when the caller is {@code this},
* no action is necessary. Otherwise the caller argument can be used
* (usually via a cast) to supply a value (and/or links to other
* values) to be combined. Assuming proper use of pending counts, the
* actions inside {@code onCompletion} occur (once) upon completion of
* a task and its subtasks. No additional synchronization is required
* within this method to ensure thread safety of accesses to fields of
* this task or other completed tasks.
*
* <p><b>Completion Traversals</b>. If using {@code onCompletion} to
* process completions is inapplicable or inconvenient, you can use
* methods {@link #firstComplete} and {@link #nextComplete} to create
* custom traversals. For example, to define a MapReducer that only
* splits out right-hand tasks in the form of the third ForEach
* example, the completions must cooperatively reduce along
* unexhausted subtask links, which can be done as follows:
*
* <pre> {@code
* class MapReducer<E> extends CountedCompleter<E> { // version 2
* final E[] array; final MyMapper<E> mapper;
* final MyReducer<E> reducer; final int lo, hi;
* MapReducer<E> forks, next; // record subtask forks in list
* E result;
* MapReducer(CountedCompleter<?> p, E[] array, MyMapper<E> mapper,
* MyReducer<E> reducer, int lo, int hi, MapReducer<E> next) {
* super(p);
* this.array = array; this.mapper = mapper;
* this.reducer = reducer; this.lo = lo; this.hi = hi;
* this.next = next;
* }
* public void compute() {
* int l = lo, h = hi;
* while (h - l >= 2) {
* int mid = (l + h) >>> 1;
* addToPendingCount(1);
* (forks = new MapReducer(this, array, mapper, reducer, mid, h, forks)).fork();
* h = mid;
* }
* if (h > l)
* result = mapper.apply(array[l]);
* // process completions by reducing along and advancing subtask links
* for (CountedCompleter<?> c = firstComplete(); c != null; c = c.nextComplete()) {
* for (MapReducer t = (MapReducer)c, s = t.forks; s != null; s = t.forks = s.next)
* t.result = reducer.apply(t.result, s.result);
* }
* }
* public E getRawResult() { return result; }
*
* public static <E> E mapReduce(E[] array, MyMapper<E> mapper, MyReducer<E> reducer) {
* return new MapReducer<E>(null, array, mapper, reducer,
* 0, array.length, null).invoke();
* }
* }}</pre>
*
* <p><b>Triggers.</b> Some CountedCompleters are themselves never
* forked, but instead serve as bits of plumbing in other designs;
* including those in which the completion of one or more async tasks
* triggers another async task. For example:
*
* <pre> {@code
* class HeaderBuilder extends CountedCompleter<...> { ... }
* class BodyBuilder extends CountedCompleter<...> { ... }
* class PacketSender extends CountedCompleter<...> {
* PacketSender(...) { super(null, 1); ... } // trigger on second completion
* public void compute() { } // never called
* public void onCompletion(CountedCompleter<?> caller) { sendPacket(); }
* }
* // sample use:
* PacketSender p = new PacketSender();
* new HeaderBuilder(p, ...).fork();
* new BodyBuilder(p, ...).fork();}</pre>
*
* @author Doug Lea
* @since 1.8
*/
/*
* 代表一类可被挂起的任务(需要等待其他任务)
*
* ①
* ② ③
* ④ ⑤ ⑥ ⑦
*
* 如图,一个大任务可以拆分很多小任务,然后归并。
* 对于子节点来说,当它执行完成后,会将父节点的挂起次数减一。
* 如果父节点的挂起次数减为0,则将父节点标记为完成。
* (可以认为挂起次数为0时,该结点可直接完成)
* 上述过程会递归进行,向上传播。
*/
public abstract class CountedCompleter<V> extends ForkJoinTask<V> {
private static final long serialVersionUID = 5232453752276485070L;
/** This task's completer, or null if none */
final CountedCompleter<?> completer; // 父任务
/** The number of pending tasks until completion */
volatile int pending; // 当前任务被挂起的次数
// VarHandle mechanics
private static final VarHandle PENDING;
static {
try {
MethodHandles.Lookup l = MethodHandles.lookup();
PENDING = l.findVarHandle(CountedCompleter.class, "pending", int.class);
} catch(ReflectiveOperationException e) {
throw new ExceptionInInitializerError(e);
}
}
/*▼ 构造方法 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Creates a new CountedCompleter with no completer
* and an initial pending count of zero.
*/
protected CountedCompleter() {
this.completer = null;
}
/**
* Creates a new CountedCompleter with the given completer
* and an initial pending count of zero.
*
* @param completer this task's completer, or {@code null} if none
*/
protected CountedCompleter(CountedCompleter<?> completer) {
this.completer = completer;
}
/**
* Creates a new CountedCompleter with the given completer
* and initial pending count.
*
* @param completer this task's completer, or {@code null} if none
* @param initialPendingCount the initial pending count
*/
protected CountedCompleter(CountedCompleter<?> completer, int initialPendingCount) {
this.completer = completer;
this.pending = initialPendingCount;
}
/*▲ 构造方法 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 任务结果 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Returns the result of the computation. By default,
* returns {@code null}, which is appropriate for {@code Void}
* actions, but in other cases should be overridden, almost
* always to return a field or function of a field that
* holds the result upon completion.
*
* @return the result of the computation
*/
// 返回当前任务的执行结果,具体逻辑由子类实现
public V getRawResult() {
return null;
}
/**
* A method that result-bearing CountedCompleters may optionally
* use to help maintain result data. By default, does nothing.
* Overrides are not recommended. However, if this method is
* overridden to update existing objects or fields, then it must
* in general be defined to be thread-safe.
*/
// 设置指定的值作为当前任务的执行结果,设置期间可以对其进一步操作,具体逻辑由子类实现
protected void setRawResult(V t) {
}
/*▲ 任务结果 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 任务 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* The main computation performed by this task.
*/
// 该任务执行的主要计算
public abstract void compute();
/**
* Implements execution conventions for CountedCompleters.
*/
/*
* 执行任务
* 该方法总是返回false,简单地说是因为:
* 在这类任务中,单个子任务完成无意义,而父任务完成需要依赖子任务
*/
protected final boolean exec() {
compute();
return false;
}
/**
* Performs an action when method {@link #tryComplete} is invoked and the pending count is zero,
* or when the unconditional method {@link #complete} is invoked.
* By default, this method does nothing.
* You can distinguish cases by checking the identity of the given caller argument.
* If not equal to {@code this}, then it is typically a subtask that may contain results (and/or links to other results) to combine.
*
* @param caller the task invoking this method (which may be this task itself)
*/
/*
* 在当前(子)任务执行完成后,需要执行该回调方法。
*
* 参数中的caller是促进当前任务完成的子任务(只有子任务完成了,父任务才可能完成)。
* 如果当前任务没有子任务,或者并不关心子任务,则参数caller的值可以直接传入当前任务。
*
* 注:该方法在complete()或tryComplete()中被回调
*/
public void onCompletion(CountedCompleter<?> caller) {
}
/**
* If the pending count is nonzero, decrements the count;
* otherwise invokes {@link #onCompletion(CountedCompleter)}
* and then similarly tries to complete this task's completer,
* if one exists, else marks this task as complete.
*/
/*
* 尝试从当前任务开始,向上传播"完成"消息,可能会触发onCompletion()回调。
*
* 在当前任务或当前任务的子任务执行完成后,调用此方法,
* 以便从当前任务出发,向上遍历,尝试完成整个任务。
*
* 具体操作就是先检查当前任务是否已完成,
* 如果没完成,则将父任务的挂起计数减一(因为当前任务已经完成了),然后结束本次尝试。
* 如果完成了,则执行该任务的onCompletion()回调,并且继续检查父任务。
*
* 注:上述的父任务在一开始时,其初值就是当前任务本身
*/
public final void tryComplete() {
CountedCompleter<?> parent, child;
// 初始值都是当前任务
parent = child = this;
for(; ; ) {
// 获取父任务的挂起次数
int count = parent.pending;
// 如果父任务的挂起次数已经为0,
if(count == 0) {
parent.onCompletion(child);
// 向上遍历,尝试完成整个任务
child = parent;
parent = parent.completer;
// 如果已经遍历到根任务,则标记整个任务的完成
if(parent == null) {
// 静默完成,即将当前任务标记为[已完成]状态(不会改变当前任务挂起的次数)
child.quietlyComplete();
return;
}
} else {
// 将父任务挂起次数减一
if(PENDING.weakCompareAndSet(parent, count, count - 1)) {
return;
}
}
}
}
/**
* Regardless of pending count, invokes {@link #onCompletion(CountedCompleter)},
* marks this task as complete and further triggers {@link #tryComplete} on this task's completer, if one exists.
* The given rawResult is used as an argument to {@link #setRawResult} before invoking {@link #onCompletion(CountedCompleter)}
* or marking this task as complete; its value is meaningful only for classes overriding {@code setRawResult}.
* This method does not modify the pending count.
*
* This method may be useful when forcing completion as soon as any one (versus all) of several subtask results are obtained.
* However, in the common (and recommended) case in which {@code setRawResult} is not overridden,
* this effect can be obtained more simply using {@link #quietlyCompleteRoot()}.
*
* @param rawResult the raw result
*/
// 将当前任务强制标记为完成,不会影响挂起的次数
public void complete(V rawResult) {
setRawResult(rawResult);
// 执行回调
onCompletion(this);
// 静默完成,即将当前任务标记为[已完成]状态(不会改变当前任务挂起的次数)
quietlyComplete();
// 如果存在父任务,则需要将"完成"消息向上传播
if(completer != null) {
completer.tryComplete();
}
}
/**
* Equivalent to {@link #tryComplete} but does not invoke {@link #onCompletion(CountedCompleter)} along the completion path:
* If the pending count is nonzero, decrements the count;
* otherwise, similarly tries to complete this task's completer, if one exists, else marks this task as complete.
* This method may be useful in cases where {@code onCompletion} should not,
* or need not, be invoked for each completer in a computation.
*/
/*
* 尝试从当前任务开始,向上传播"完成"消息,不会触发onCompletion()回调。
*
* 在当前任务或当前任务的子任务执行完成后,调用此方法,
* 以便从当前任务出发,向上遍历,尝试完成整个任务。
*
* 具体操作就是先检查当前任务是否已完成,
* 如果没完成,则将父任务的挂起计数减一(因为当前任务已经完成了),然后结束本次尝试。
* 如果完成了,则继续检查父任务。
*
* 注:上述的父任务在一开始时,其初值就是当前任务本身
*/
public final void propagateCompletion() {
CountedCompleter<?> parent = this; // 父任务初始化为当前任务
CountedCompleter<?> child;
for(; ; ) {
// 获取父任务的挂起次数
int count = parent.pending;
if(count == 0) {
// 向上遍历,尝试完成整个任务
child = parent;
parent = parent.completer;
// 如果已经遍历到根任务,则标记整个任务的完成
if(parent == null) {
// 静默完成,即将当前任务标记为[已完成]状态(不会改变当前任务挂起的次数)
child.quietlyComplete();
return;
}
} else {
// 将父任务挂起次数减一
if(PENDING.weakCompareAndSet(parent, count, count - 1)) {
return;
}
}
}
}
/**
* Equivalent to {@code getRoot().quietlyComplete()}.
*/
// 获取根任务,并使其静默完成,等价于getRoot().quietlyComplete()
public final void quietlyCompleteRoot() {
for(CountedCompleter<?> a = this, p; ; ) {
if((p = a.completer) == null) {
// 静默完成,即将当前任务标记为[已完成]状态(不会改变当前任务挂起的次数)
a.quietlyComplete();
return;
}
a = p;
}
}
/**
* If this task has not completed, attempts to process at most the
* given number of other unprocessed tasks for which this task is
* on the completion path, if any are known to exist.
*
* @param maxTasks the maximum number of tasks to process. If
* less than or equal to zero, then no tasks are
* processed.
*/
// 尝试加速task的完成,并在最终返回任务的状态
public final void helpComplete(int maxTasks) {
Thread t;
if(maxTasks>0 && status >= 0) {
if((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
ForkJoinWorkerThread wt = (ForkJoinWorkerThread) t;
// 【工人线程】尝试加速task的完成,并在最终返回任务的状态
wt.pool.helpComplete(wt.workQueue, this, maxTasks);
} else {
// 【外部线程】尝试加速task的完成,并在最终返回任务的状态
ForkJoinPool.common.externalHelpComplete(this, maxTasks);
}
}
}
/*▲ 任务 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 属性 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Returns the completer established in this task's constructor, or {@code null} if none.
*
* @return the completer
*/
// 获取父任务
public final CountedCompleter<?> getCompleter() {
return completer;
}
/**
* Returns the root of the current computation; i.e., this task if it has no completer, else its completer's root.
*
* @return the root of the current computation
*/
// 获取根任务
public final CountedCompleter<?> getRoot() {
CountedCompleter<?> a = this, p;
while((p = a.completer) != null) {
a = p;
}
return a;
}
/**
* If this task's pending count is zero, returns this task;
* otherwise decrements its pending count and returns {@code null}.
* This method is designed to be used with {@link #nextComplete} in
* completion traversal loops.
*
* @return this task, if pending count was zero, else {@code null}
*/
/*
* 1 如果当前任务未挂起,则返回当前任务
* 2 如果当前任务已挂起,则将挂起次数减一后返回null
*/
public final CountedCompleter<?> firstComplete() {
for( ; ; ) {
int c = pending;
if(c == 0) {
return this;
} else if(PENDING.weakCompareAndSet(this, c, c - 1)) {
return null;
}
}
}
/**
* If this task does not have a completer, invokes {@link
* ForkJoinTask#quietlyComplete} and returns {@code null}. Or, if
* the completer's pending count is non-zero, decrements that
* pending count and returns {@code null}. Otherwise, returns the
* completer. This method can be used as part of a completion
* traversal loop for homogeneous task hierarchies:
*
* <pre> {@code
* for (CountedCompleter<?> c = firstComplete();
* c != null;
* c = c.nextComplete()) {
* // ... process c ...
* }}</pre>
*
* @return the completer, or {@code null} if none
*/
/*
* 1 如果当前任务没有父任务,则使其静默完成并返回null
* 2 如果当前任务存在父任务:
* 2.1 如果父任务未挂起,则返回父任务
* 2.2 如果父任务已挂起,则将父任务挂起次数减一后返回null
*/
public final CountedCompleter<?> nextComplete() {
if(completer != null) {
return completer.firstComplete();
} else {
// 静默完成,即将当前任务标记为[已完成]状态(不会改变当前任务挂起的次数)
quietlyComplete();
return null;
}
}
/**
* Returns the current pending count.
*
* @return the current pending count
*/
// 获取当前任务的挂起次数
public final int getPendingCount() {
return pending;
}
/**
* Sets the pending count to the given value.
*
* @param count the count
*/
// 设置当前任务的挂起次数
public final void setPendingCount(int count) {
pending = count;
}
/**
* Adds (atomically) the given value to the pending count.
*
* @param delta the value to add
*/
// 原子地增加任务的挂起次数(+delta)
public final void addToPendingCount(int delta) {
PENDING.getAndAdd(this, delta);
}
/**
* Sets (atomically) the pending count to the given count only if
* it currently holds the given expected value.
*
* @param expected the expected value
* @param count the new value
*
* @return {@code true} if successful
*/
// 原子地更新任务的挂起次数(更新为count)
public final boolean compareAndSetPendingCount(int expected, int count) {
return PENDING.compareAndSet(this, expected, count);
}
/**
* If the pending count is nonzero, (atomically) decrements it.
*
* @return the initial (undecremented) pending count holding on entry
* to this method
*/
// 原子地减少任务的挂起次数(-1)
public final int decrementPendingCountUnlessZero() {
int c;
while((c = pending) != 0 && !PENDING.weakCompareAndSet(this, c, c - 1))
;
return c;
}
/*▲ 属性 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 异常 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Performs an action when method {@link
* #completeExceptionally(Throwable)} is invoked or method {@link
* #compute} throws an exception, and this task has not already
* otherwise completed normally. On entry to this method, this task
* {@link ForkJoinTask#isCompletedAbnormally}. The return value
* of this method controls further propagation: If {@code true}
* and this task has a completer that has not completed, then that
* completer is also completed exceptionally, with the same
* exception as this completer. The default implementation of
* this method does nothing except return {@code true}.
*
* @param ex the exception
* @param caller the task invoking this method (which may
* be this task itself)
*
* @return {@code true} if this exception should be propagated to this
* task's completer, if one exists
*/
public boolean onExceptionalCompletion(Throwable ex, CountedCompleter<?> caller) {
return true;
}
/**
* Supports ForkJoinTask exception propagation.
*/
void internalPropagateException(Throwable ex) {
CountedCompleter<?> a = this, s = a;
while(a.onExceptionalCompletion(ex, s) && a.status >= 0){
s = a;
a = s.completer;
if(a!=null && a.status>=0){
int i = a.recordExceptionalCompletion(ex);
if(isExceptionalStatus(i)){
// ...
}
}
}
}
/*▲ 异常 ████████████████████████████████████████████████████████████████████████████████┛ */
}