-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcpu2.cpp
94 lines (80 loc) · 3.54 KB
/
cpu2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#include <stb/stb_image.h> // stb for image loading
#include <stb/stb_image_write.h> // stb for image saving
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm> // std::clamp
static constexpr auto PI { 3.14159265358979323846 };
double gaussian(int x, int y, double sigma = 2.0) {
double sigma_coefficient = 1.0 / (2.0 * sigma * sigma);
// return (sigma_coefficient / PI) * std::exp(-(x * x + y * y) * sigma_coefficient);
return std::exp(-(x * x + y * y) * sigma_coefficient);
}
int main(int argc, char *argv[]) {
if (argc != 5) {
std::cerr << "Usage: "
<< argv[0] << " <input_image_path> <output_image_path> <blur_radius> <blur_sigma>\n";
return 1;
}
const char* input_image_path = argv[1];
const char* output_image_path = argv[2];
int blur_radius = std::stoi(argv[3]);
double blur_sigma = std::stod(argv[4]);
if (blur_radius <= 0 || blur_sigma <= 0) {
std::cerr << "Error: Blur radius and sigma must be positive values.\n";
return 1;
}
int width { 0 };
int height { 0 };
int channels { 0 };
std::uint8_t* image_data = stbi_load(input_image_path, &width, &height, &channels, 3);
if (!image_data) {
std::cerr << "Failed to load image: " << input_image_path << "\n";
return 1;
}
std::vector<std::uint8_t> input_image(image_data, image_data + width * height * channels);
std::vector<std::uint8_t> output_image(width * height * channels, 0);
stbi_image_free(image_data);
int kernel_size = blur_radius * 2 + 1;
std::vector<float> gaussian_kernel(kernel_size * kernel_size, 0.0f);
auto kernel_sum { 0.0f };
for (int y = 0; y < kernel_size; ++y) {
for (int x = 0; x < kernel_size; ++x) {
gaussian_kernel[x + y * kernel_size] = gaussian(
x - blur_radius,
blur_radius - y, // 'y - blur_radius' is also ok
blur_sigma
);
kernel_sum += gaussian_kernel[x + y * kernel_size];
}
}
for (auto& weight : gaussian_kernel) { weight /= kernel_sum; }
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
auto sum_r { 0.0f };
auto sum_g { 0.0f };
auto sum_b { 0.0f };
for (int ky = 0; ky < kernel_size; ++ky) {
for (int kx = 0; kx < kernel_size; ++kx) {
int sample_x = std::clamp(x - blur_radius + kx, 0, width - 1);
int sample_y = std::clamp(y - blur_radius + ky, 0, height - 1);
int pixel_index = channels * (sample_x + sample_y * width);
float weight = gaussian_kernel[kx + ky * kernel_size];
sum_r += input_image[pixel_index + 0] * weight;
sum_g += input_image[pixel_index + 1] * weight;
sum_b += input_image[pixel_index + 2] * weight;
}
}
int output_pixel_index = channels * (x + y * width);
output_image[output_pixel_index + 0] = static_cast<uint8_t>(sum_r);
output_image[output_pixel_index + 1] = static_cast<uint8_t>(sum_g);
output_image[output_pixel_index + 2] = static_cast<uint8_t>(sum_b);
}
}
if (!stbi_write_png(output_image_path, width, height, channels, output_image.data(), 0)) {
std::cerr << "Failed to save image: " << output_image_path << "\n";
return 1;
}
std::cout << "Gaussian blur applied successfully.\nOutput saved to: " << output_image_path << "\n";
return 0;
}