-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
69 lines (51 loc) · 2.42 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch
from torch.nn.functional import cross_entropy
import argparse
from tqdm import tqdm
from model import TextBackbone
from data import ReviewsDataset, load_data
from transformers import AdamW
def parse_arguments():
parser = argparse.ArgumentParser(
description='Simple Sentiment Analysis with PyTorch and Transformers'
)
parser.add_argument('--n_classes', default=2, type=int, help='number of classes')
parser.add_argument('--data_path', type=str, default='data/data.txt', help='the path of dataset')
parser.add_argument('--batch_size', default=8, type=int, help='batch size')
parser.add_argument('--epochs', default=50, type=int, help='number of epochs tp train for')
parser.add_argument('--lr', default=1e-3, type=float, help='learning rate')
parser.add_argument('--device', default="cuda" if torch.cuda.is_available() else "cpu", type=str, help='divice')
parser.add_argument('--seed', type=int, default=1, help='Random seed, a int number')
return parser.parse_args()
def train(model, dataset, optimizer, device, batch_size, epochs):
model.train()
train_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
min_loss = float('inf')
for epoch in range(epochs):
pbar = tqdm(train_loader)
pbar.set_description("Epoch {}:".format(epoch))
total_loss = 0
for batch in pbar:
batch = {key: value.to(device) for key, value in batch.items()}
optimizer.zero_grad()
output = model(batch)
loss = cross_entropy(output, batch['targets'])
loss.backward()
optimizer.step()
pbar.set_postfix(loss=loss.item())
total_loss += loss.item()
if total_loss < min_loss:
min_loss = total_loss
torch.save(model.state_dict(), 'output/model_best.pth')
print("Epoch {}: Average loss: {}".format(epoch, total_loss / len(train_loader)))
return model
def main():
args = parse_arguments()
reviews, targets = load_data(args.data_path)
dataset = ReviewsDataset(reviews, targets)
model = TextBackbone(num_classes=args.n_classes).to(args.device)
optimizer = AdamW(model.parameters(),lr=2e-5, eps=1e-8)
model = train(model, dataset, optimizer, args.device, args.batch_size, args.epochs)
torch.save(model.state_dict(), 'model.pth')
if __name__ == '__main__':
main()