-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
86 lines (72 loc) · 2.66 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import torch
from torch.utils.data import Dataset
from transformers import AutoTokenizer
class ReviewsDataset(Dataset):
def __init__(self, reviews, targets, tokenizer_name='chinese-roberta-wwm-ext', max_len=512):
self.reviews = reviews
self.targets = targets
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
self.max_len = max_len
self.len = len(self.reviews)
def __getitem__(self, item):
review = self.reviews[item]
target = self.targets[item]
encoding = self.tokenizer.encode_plus(
review,
add_special_tokens=True,
max_length=self.max_len,
return_token_type_ids=True,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt')
return {
# 'review_text': review,
'input_ids': encoding['input_ids'].flatten(),
'attention_mask': encoding['attention_mask'].flatten(),
'token_type_ids' : encoding['token_type_ids'].flatten(),
'targets': torch.tensor(target, dtype=torch.long)
}
def __len__(self):
return self.len
class ReviewsPredictDataset(Dataset):
def __init__(self, reviews, tokenizer_name='chinese-roberta-wwm-ext', max_len=512):
self.reviews = reviews
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
self.max_len = max_len
self.len = len(self.reviews)
def __getitem__(self, item):
review = self.reviews[item]
encoding = self.tokenizer.encode_plus(
review,
max_length=self.max_len,
padding='max_length',
return_tensors='pt')
return {
# 'review_text': review,
'input_ids': encoding['input_ids'].flatten(),
'attention_mask': encoding['attention_mask'].flatten(),
'token_type_ids' : encoding['token_type_ids'].flatten(),
}
def __len__(self):
return self.len
def load_data(file_path):
reviews = []
targets = []
with open(file_path, 'r', encoding='utf-8') as f:
for line in f:
review, target = line.strip().split('\t')
reviews.append(review)
targets.append(int(target))
return reviews, targets
def load_predict_data(file_path):
reviews = []
with open(file_path, 'r', encoding='utf-8') as f:
for line in f:
review = line.strip()
reviews.append(review)
return reviews
if __name__ == '__main__':
reviews, targets = load_data('test_data.txt')
dataset = ReviewsDataset(reviews, targets)
print(dataset[0])