-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cifar.py
326 lines (241 loc) · 12.3 KB
/
train_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# -*- coding: utf-8 -*-
import argparse, logging
import random, time, sys
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import AEMO_Main as mm # 导入主函数函数
from build_dataset import build_search_spine3
from cell_archit import NetworkSpine, NetworkCIFAR
from utils import create_dir, count_parameters_in_MB, Calculate_flops, Plot_network
import utils
import shutil
from build_dataset import get_cifar10_dataloader, get_cifar100_dataloader, build_search_spine3, build_search_Optimizer_Loss
# @Reader : Labyrinthine Leo
# @Time : 2020.12.24
# @role : training the spine model searched by AEMONAS
def model_train(train_queue, model, train_criterion, optimizer, scheduler,
args, valid_queue, eval_criterion, test_queue, print_=False):
since_time = time.time()
train_acc_list = []
valid_acc_list = []
test_acc_list = []
train_loss_list = []
valid_loss_list = []
global_step = 0
best_prec1 = 0
total = len(train_queue)
for epoch in range(args.train_epochs):
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
# switch to train mode
model.train()
batchtime = time.time()
for step, (inputs, targets) in enumerate(train_queue):
print('\r[Epoch:{0:>2d}/{1:>2d}, Training {2:>2d}/{3:>2d}, every step time {4:.2f}s, all used_time {5:.2f}min]'
.format(epoch+1, args.train_epochs, step+1, total, time.time()-batchtime, (time.time()-since_time)/60), end='')
inputs, targets = inputs.to(args.device), targets.to(args.device)
optimizer.zero_grad()
outputs = model(inputs, step=global_step)
global_step += 1
if args.train_use_aux_head:
outputs, outputs_aux = outputs[0], outputs[1]
loss = train_criterion(outputs, targets)
if args.train_use_aux_head:
loss_aux = train_criterion(outputs_aux, targets)
loss += args.train_auxiliary_weight * loss_aux
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), args.train_grad_bound)
optimizer.step()
prec1, prec5 = utils.accuracy(outputs, targets, topk=(1, 2))
objs.update(loss.data, inputs.size(0))
top1.update(prec1.data, inputs.size(0))
top5.update(prec5.data, inputs.size(0))
batchtime = time.time()
train_acc_list.append(prec1)
# train_loss_list.append(loss)
scheduler.step()
logging.info('epoch %d lr %e', epoch+1, scheduler.get_lr()[0])
print('train accuracy top1:{0:.3f}, train accuracy top5:{1:.3f}, train loss:{2:.5f}'.format(top1.avg, top5.avg, objs.avg))
logging.info('train accuracy top1:{0:.3f}, train accuracy top5:{1:.3f}, train loss:{2:.5f}'.format(top1.avg,top5.avg,objs.avg))
valid_top1_acc, valid_top5_acc, loss = model_valid(valid_queue, model, eval_criterion, args)
# acc1 = model_test(test_queue, model, eval_criterion)
valid_acc_list.append(valid_top1_acc)
# test_acc_list.append(acc1)
# valid_loss_list.append(loss)
# remember best prec1 and save checkpoint
is_best = (valid_top1_acc > best_prec1)
best_prec1 = max(prec1, best_prec1)
save_checkpoint(args, {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
# 'curr_prec1': prec1,
}, is_best)
used_time = (time.time()-since_time) / 60
# return train_acc_list, valid_acc_list, test_acc_list
return train_acc_list, valid_acc_list
def model_valid(valid_queue, model, eval_criterion, args):
total = len(valid_queue) # the nums of batch
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
with torch.no_grad():
model.eval()
for step, (inputs, targets) in enumerate(valid_queue):
print('\r[-------------Validating {0:>2d}/{1:>2d}]'.format(step+1, total), end='')
inputs, targets = inputs.to(args.device), targets.to(args.device)
outputs = model(inputs)
if args.train_use_aux_head:
outputs, outputs_aux =outputs[0], outputs[1]
loss = eval_criterion(outputs, targets)
# prec1, prec5 = utils.accuracy(outputs, targets, topk=(1, 5))
prec1, prec5 = utils.accuracy(outputs, targets, topk=(1, 5))
objs.update(loss.data, inputs.size(0))
top1.update(prec1.data, inputs.size(0))
top5.update(prec5.data, inputs.size(0))
print('valid accuracy top1:{0:.3f}, valid accuracy top5:{1:.3f}, valid loss:{2:.5f}'.format(top1.avg, top5.avg, objs.avg))
logging.info('valid accuracy top1:{0:.3f}, valid accuracy top5:{1:.3f}, valid loss:{2:.5f}'.format(top1.avg, top5.avg, objs.avg))
return top1.avg, top5.avg, objs.avg
def model_test(test_loader, model, criterion):
model.eval()
acc1_sum, acc2_sum, n = 0.0, 0.0, 0
true_labels = []
pred_labels = []
with torch.no_grad():
for input, target in test_loader:
# print(target.data.numpy())
true_labels += list(target.data.numpy())
input = input.cuda()
target = target.cuda()
input_var = input
target_var = target
# compute output
output = model(input_var)
# print(output.argmax(dim=1, keepdim=True).view(-1).cpu().numpy())
pred_labels += list(output.argmax(dim=1, keepdim=True).view(-1).cpu().numpy())
loss = criterion(output, target_var)
# measure utils.accuracy and record loss
prec1, prec2 = utils.accuracy(output.data, target, topk=(1, 5))
# print("loss: {:.3f}".format(loss.cpu().numpy()), "acc1: {:.3f}".format(prec1.cpu().numpy()), "acc2: {:.3f}".format(prec2.cpu().numpy()))
acc1_sum += prec1 * target.shape[0]
acc2_sum += prec2 * target.shape[0]
n += target.shape[0]
acc1 = acc1_sum / n
acc2 = acc2_sum / n
print(' * Prec@1 {:.3f} Prec@2 {:.3f}'.format(acc1, acc2))
return acc1
def build_cifar10_dataset(args):
"""
Building the cifar dataset(10/100 classes), and get the train/valid queue
:return: None
"""
train_queue, valid_queue, test_queue = get_cifar10_dataloader(batch_size=args.train_batch_size, num_workers=args.num_work, shuffle=False)
return train_queue, valid_queue, test_queue
def build_cifar100_dataset(args):
"""
Building the cifar dataset(10/100 classes), and get the train/valid queue
:return: None
"""
train_queue, valid_queue, test_queue = get_cifar100_dataloader(batch_size=args.train_batch_size, num_workers=args.num_work, shuffle=False)
return train_queue, valid_queue, test_queue
def save_checkpoint(args, state, is_best):
filename = '{}/AEMONet_latest.pth.tar'.format(args.save)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename,
'{}/AEMONet_best.pth.tar'.format(args.save))
def main(args):
x = [] # insert the best encoding
solution = mm.Individual(x)
Plot_network(solution.dag[0], '{}/best_conv_dag.png'.format(args.save))
Plot_network(solution.dag[1], '{}/best_reduc_dag.png'.format(args.save))
if args.dataset == 'cifar10':
print('build cifar10 dataset')
train_queue, valid_queue, test_queue = build_cifar10_dataset(args) # get cifar dataset
elif args.dataset == 'cifar100':
train_queue, valid_queue, test_queue = build_cifar100_dataset(args) # get cifar dataset
# 构建模型
model = NetworkCIFAR(args, args.classes, args.train_layers, args.train_channels, solution.dag, args.train_use_aux_head,
args.train_keep_prob, args.train_steps, args.train_drop_path_keep_prob,
args.train_channels_double)
num_parameters = count_parameters_in_MB(model)
print("Model Params: {} Mb".format(num_parameters))
# ==================== build optimizer, loss and scheduler ====================
# train_criterion, eval_criterion, optimizer, scheduler = build_search_Optimizer_Loss(model, args, epoch=-1)
model.cuda() # gpu
train_criterion = nn.CrossEntropyLoss().cuda()
eval_criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(
model.parameters(),
0.01, # there is a doubt: why the last lr=0.001
momentum=args.train_momentum,
weight_decay=args.train_l2_reg,
)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.train_epochs, args.train_lr_min, -1)
# ==================== training the individual model and get valid/test accuracy ====================
result = model_train(train_queue, model, train_criterion, optimizer,
scheduler, args, valid_queue, eval_criterion, test_queue,
print_=True) # True
acc1 = model_test(test_queue, model, eval_criterion)
print(acc1)
res = np.vstack(result)
logging.info(res)
print(np.max(res, axis=1, keepdims=True))
if __name__=="__main__":
# =================================== args ===================================
# ******************* common setting ******************
parser = argparse.ArgumentParser(description='training on cifar dataset')
parser.add_argument('--seed', type=int, default=1000)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--save', type=str, default='result')
# ******************** dataset setting ******************
parser.add_argument('--dataset', type=str, default="cifar10")
parser.add_argument('--classes', type=int, default=10)
parser.add_argument('--train_autoaugment', action='store_true', default=False)
parser.add_argument('--num_work', type=int, default=12, help='the number of the data worker.')
# ****************** optimization setting ******************
parser.add_argument('--train_epochs', type=int, default=600)
parser.add_argument('--train_lr_max', type=float, default=0.025)
parser.add_argument('--train_lr_min', type=float, default=0.001)
parser.add_argument('--train_momentum', type=float, default=0.9)
parser.add_argument('--train_l2_reg', type=float, default=1e-5)
parser.add_argument('--train_grad_bound', type=float, default=5.0)
parser.add_argument('--train_batch_size', type=int, default=256)
parser.add_argument('--eval_batch_size', type=int, default=500)
parser.add_argument('--train_steps', type=int, default=50000)
# ********************* structure setting ******************
parser.add_argument('--train_use_aux_head', action='store_true', default=False)
parser.add_argument('--train_auxiliary_weight', type=float, default=0.4)
parser.add_argument('--train_layers', type=int, default=1)
parser.add_argument('--train_keep_prob', type=float, default=0.6) # 0.6 also for final training
parser.add_argument('--train_drop_path_keep_prob', type=float,
default=0.8)
parser.add_argument('--train_channels', type=int, default=16)
parser.add_argument('--train_channels_double', action='store_true',
default=True) # False for Cifar, True for ImageNet model
args = parser.parse_args()
args.save = '{}/AEMO_train_{}_{}'.format(args.save, args.dataset, time.strftime("%Y-%m-%d-%H-%M-%S"))
create_dir(args.save)
# =================================== logging ===================================
log_format = '%(asctime)s %(message)s'
logging.basicConfig(filename='{}/logs.log'.format(args.save),
level=logging.INFO, format=log_format, datefmt='%Y-%m-%d %I:%M:%S %p')
logging.info("[Experiments Setting]\n" + "".join(
["[{0}]: {1}\n".format(name, value) for name, value in args.__dict__.items()]))
# =================================== random seed setting ===================================
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
cudnn.enabled = True
cudnn.benchmark = True
cudnn.deterministic = True
# main
main(args)