-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfolder2lmdb.py
135 lines (101 loc) · 3.75 KB
/
folder2lmdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import os.path as osp
from PIL import Image
import six
import lmdb
import pyarrow as pa
import numpy as np
import torch.utils.data as data
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
def loads_pyarrow(buf):
"""
Args:
buf: the output of `dumps`.
"""
return pa.deserialize(buf)
class ImageFolderLMDB(data.Dataset):
def __init__(self, db_path, transform=None, target_transform=None):
self.db_path = db_path
self.env = lmdb.open(db_path, subdir=osp.isdir(db_path),
readonly=True, lock=False,
readahead=False, meminit=False)
with self.env.begin(write=False) as txn:
self.length = loads_pyarrow(txn.get(b'__len__'))
self.keys = loads_pyarrow(txn.get(b'__keys__'))
self.transform = transform
self.target_transform = target_transform
def __getitem__(self, index):
env = self.env
with env.begin(write=False) as txn:
byteflow = txn.get(self.keys[index])
unpacked = loads_pyarrow(byteflow)
# load img
imgbuf = unpacked[0]
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
img = Image.open(buf).convert('RGB')
# load label
target = unpacked[1]
if self.transform is not None:
img = self.transform(img)
im2arr = np.array(img)
if self.target_transform is not None:
target = self.target_transform(target)
# return img, target
return im2arr, target
def __len__(self):
return self.length
def __repr__(self):
return self.__class__.__name__ + ' (' + self.db_path + ')'
def raw_reader(path):
with open(path, 'rb') as f:
bin_data = f.read()
return bin_data
def dumps_pyarrow(obj):
"""
Serialize an object.
Returns:
Implementation-dependent bytes-like object
"""
return pa.serialize(obj).to_buffer()
def folder2lmdb(dpath, name="train", write_frequency=5000):
if name =='val':
allocate_size = round(1099511627776 / 125)
elif name=='train':
allocate_size = round(1099511627776 / 6.8)
directory = osp.expanduser(osp.join(dpath, name))
print("Loading dataset from %s" % directory)
dataset = ImageFolder(directory, loader=raw_reader)
data_loader = DataLoader(dataset, num_workers=0, collate_fn=lambda x: x)
lmdb_path = osp.join(dpath, "%s.lmdb" % name)
isdir = os.path.isdir(lmdb_path)
print("Generate LMDB to %s" % lmdb_path)
db = lmdb.open(lmdb_path, subdir=isdir,
map_size=allocate_size, readonly=False,
meminit=False, map_async=True) # map_size 预定义的大小,train 200G ,val 10G
txn = db.begin(write=True)
for idx, data in enumerate(data_loader):
image, label = data[0]
txn.put(u'{}'.format(idx).encode('ascii'), dumps_pyarrow((image, label)))
print("\r[%d/%d]" % (idx, len(data_loader)),end='')
if idx % write_frequency == 0:
txn.commit()
txn = db.begin(write=True)
# finish iterating through dataset
txn.commit()
keys = [u'{}'.format(k).encode('ascii') for k in range(idx + 1)]
with db.begin(write=True) as txn:
txn.put(b'__keys__', dumps_pyarrow(keys))
txn.put(b'__len__', dumps_pyarrow(len(keys)))
print("Flushing database ...")
db.sync()
db.close()
if __name__ == "__main__":
# generate lmdb
# path = '/home/severuspeng/AppendDisk/ImageNet/train/n03930630/n03930630_8420.JPEG'
# A = raw_reader(path)
# print('hello')
# folder2lmdb("/home/severuspeng/AppendDisk/ImageNet/", name="val")
folder2lmdb("/home/severuspeng/AppendDisk/ImageNet/", name="train")