-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrefs_html_to_evidences.py
272 lines (215 loc) · 10.9 KB
/
refs_html_to_evidences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import pandas as pd
import nltk
import html2text
import logging
import requests
from typing import Dict, List, Tuple, Optional
from utils.verbalisation_module import VerbModule
from utils.sentence_retrieval_module import SentenceRetrievalModule
import numpy as np
class HTMLSentenceProcessor:
def __init__(self):
nltk.download('punkt', quiet=True)
self.logger = logging.getLogger(__name__)
self.h = html2text.HTML2Text()
self.h.ignore_links = True
def process_html_to_sentences(self, html_df: pd.DataFrame) -> pd.DataFrame:
"""Convert HTML documents to sentences, skipping failed HTML fetches"""
# Filter out failed HTML fetches
valid_html_df = html_df[~html_df['html'].str.startswith('Error:')].copy()
def split_into_sentences(text):
if not text:
return ["No content available"]
return nltk.sent_tokenize(text)
def slide_sentences(sentences, window_size=2):
if not sentences:
return ["No content available"]
try:
if len(sentences) < window_size:
return [" ".join(sentences)]
return [" ".join(sentences[i:i + window_size]) for i in range(len(sentences) - window_size + 1)]
except:
return ["Error processing content"]
# Convert HTML to text using html2text
valid_html_df['html2text'] = valid_html_df['html'].apply(lambda x: self.h.handle(x))
# Split text into sentences
valid_html_df['nlp_sentences'] = valid_html_df['html2text'].apply(split_into_sentences)
valid_html_df['nlp_sentences_slide_2'] = valid_html_df['nlp_sentences'].apply(slide_sentences)
return valid_html_df[['reference_id', 'url', 'nlp_sentences', 'nlp_sentences_slide_2']]
class EvidenceSelector:
def __init__(self, sentence_retrieval=None, verb_module=None):
self.logger = logging.getLogger(__name__)
self.endpoint_url = "https://query.wikidata.org/sparql"
self.headers = {
'User-Agent': 'Mozilla/5.0 (compatible; MyBot/1.0; mailto:[email protected])'
}
# Use provided models or create new ones
self.verb_module = verb_module or VerbModule()
self.sentence_retrieval = sentence_retrieval or SentenceRetrievalModule(max_len=512)
self.top_k = 5
def get_labels_from_sparql(self, property_ids: List[str], entity_ids: List[str]) -> Tuple[Dict[str, str], Dict[str, str]]:
"""
Get labels for properties and entities using SPARQL
"""
# Prepare property and entity IDs for SPARQL query
property_values = ' '.join([f'wd:{pid}' for pid in property_ids])
entity_values = ' '.join([f'wd:{eid}' for eid in entity_ids])
query = f"""
SELECT ?id ?label WHERE {{
VALUES ?id {{ {property_values} {entity_values} }}
?id rdfs:label ?label .
FILTER(LANG(?label) = "en")
}}
"""
try:
r = requests.get(self.endpoint_url,
params={'format': 'json', 'query': query},
headers=self.headers)
r.raise_for_status()
results = r.json()
# Create dictionaries for property and entity labels
labels = {}
for result in results['results']['bindings']:
entity_id = result['id']['value'].split('/')[-1]
label = result['label']['value']
labels[entity_id] = label
return labels
except Exception as e:
self.logger.error(f"Error fetching labels: {e}")
return {}
def extract_object_id(self, datavalue: str) -> Optional[str]:
"""Extract object ID from datavalue string"""
try:
value_dict = eval(datavalue)
if 'value' in value_dict and 'numeric-id' in value_dict['value']:
return f"Q{value_dict['value']['numeric-id']}"
except:
pass
return None
def enrich_claims_with_labels(self, relevant_claims: pd.DataFrame) -> pd.DataFrame:
"""Add property and object labels to claims"""
# Get unique property IDs and entity IDs
property_ids = relevant_claims['property_id'].unique().tolist()
# Extract object IDs from datavalue
relevant_claims['object_id'] = relevant_claims['datavalue'].apply(self.extract_object_id)
object_ids = [oid for oid in relevant_claims['object_id'].unique() if oid is not None]
# Get labels from SPARQL
all_labels = self.get_labels_from_sparql(property_ids, object_ids)
# Add labels as new columns
relevant_claims['property_label'] = relevant_claims['property_id'].map(all_labels)
relevant_claims['object_label'] = relevant_claims['object_id'].map(all_labels)
return relevant_claims
def get_relevant_claims(self, sentences_df: pd.DataFrame, claims_df: pd.DataFrame, claims_refs_df: pd.DataFrame) -> pd.DataFrame:
"""
Find claims that have accessible references and enrich them with labels
"""
# Get list of reference_ids that we actually have sentences for
accessible_refs = set(sentences_df['reference_id'].unique())
# Filter claims_refs to only include references we have sentences for
valid_claims_refs = claims_refs_df[claims_refs_df['reference_id'].isin(accessible_refs)]
# Get the claims and merge with their accessible references
relevant_claims = (claims_df[['claim_id', 'entity_id', 'property_id', 'datavalue', 'entity_label']]
.merge(valid_claims_refs[['claim_id', 'reference_id']],
on='claim_id',
how='inner'))
# Rename entity_id column to qid for consistency with the rest of the code
relevant_claims = relevant_claims.rename(columns={'entity_id': 'qid'})
# Enrich claims with property and object labels
relevant_claims = self.enrich_claims_with_labels(relevant_claims)
return relevant_claims
def verbalize_claims(self, relevant_claims: pd.DataFrame) -> pd.DataFrame:
"""
Add verbalized versions of the claims to the DataFrame
"""
# Create triples for verbalization
triples = []
for _, row in relevant_claims.iterrows():
triple = {
'subject': row['entity_label'],
'predicate': row['property_label'],
'object': row['object_label']
}
triples.append(triple)
# Add verbalization columns
relevant_claims['verbalisation'] = self.verb_module.verbalise_triples(triples)
relevant_claims['verbalisation_unks_replaced'] = relevant_claims['verbalisation'].apply(
self.verb_module.replace_unks_on_sentence
)
relevant_claims['verbalisation_unks_replaced_then_dropped'] = relevant_claims['verbalisation'].apply(
lambda x: self.verb_module.replace_unks_on_sentence(x, empty_after=True)
)
return relevant_claims
def select_relevant_sentences(self, relevant_claims: pd.DataFrame, sentences_df: pd.DataFrame) -> pd.DataFrame:
"""
Select most relevant sentences for each claim using semantic similarity
"""
results = []
for _, claim_row in relevant_claims.iterrows():
claim_text = claim_row['verbalisation_unks_replaced_then_dropped']
ref_id = claim_row['reference_id']
# Get sentences for the matching reference_id
ref_sentences = sentences_df[sentences_df['reference_id'] == ref_id]['nlp_sentences'].iloc[0]
if not ref_sentences or ref_sentences == ["No TEXT"]:
continue
# Create sentence pairs for scoring
sentence_pairs = [(claim_text, sentence) for sentence in ref_sentences]
# Get similarity scores using score_sentence_pairs
similarities = self.sentence_retrieval.score_sentence_pairs(sentence_pairs)
# Get top k most similar sentences
top_k_indices = np.argsort(similarities)[-self.top_k:][::-1]
# Create results for this claim
for idx in top_k_indices:
score = float(similarities[idx])
sentence = ref_sentences[idx]
results.append({
'reference_id': ref_id,
'claim_id': claim_row['claim_id'],
'claim': claim_text,
'sentence': sentence,
'similarity_score': score,
'sentence_id': f"{ref_id}_{idx}",
'qid': claim_row['qid'],
'property_id': claim_row['property_id'],
'object_id': claim_row['object_id'],
'entity_label': claim_row['entity_label'],
'property_label': claim_row['property_label'],
'object_label': claim_row['object_label']
})
return pd.DataFrame(results)
def process_evidence(self, sentences_df: pd.DataFrame, parser_result: Dict) -> pd.DataFrame:
"""
Main method to process evidence selection pipeline
Args:
sentences_df: DataFrame containing processed sentences
parser_result: Dictionary containing 'claims' and 'claims_refs' DataFrames
Returns:
DataFrame containing selected evidence sentences with similarity scores
"""
# 1. Get relevant claims with references
relevant_claims = self.get_relevant_claims(
sentences_df,
parser_result['claims'],
parser_result['claims_refs']
)
# 2. Add verbalization
relevant_claims = self.verbalize_claims(relevant_claims)
# 3. Select relevant sentences
evidence_df = self.select_relevant_sentences(relevant_claims, sentences_df)
return evidence_df
if __name__ == "__main__":
qid = 'Q3136081'
# Get URLs and claims from WikidataParser
from wikidata_parser import WikidataParser
from refs_html_collection import HTMLFetcher
# Get URLs and claims
parser = WikidataParser()
parser_result = parser.process_entity(qid)
# Fetch HTML content
fetcher = HTMLFetcher(config_path='config.yaml')
html_df = fetcher.fetch_all_html(parser_result['urls'], parser_result)
# Convert HTML to sentences
processor = HTMLSentenceProcessor()
sentences_df = processor.process_html_to_sentences(html_df)
# Process evidence selection
selector = EvidenceSelector()
evidence_df = selector.process_evidence(sentences_df, parser_result)