From 80838340c1b282999920fd3f11da4ac7062cfc38 Mon Sep 17 00:00:00 2001 From: Maqsood Mubarak Rajput <24833949+maqsoodrajput@users.noreply.github.com> Date: Sat, 8 Jun 2024 01:24:16 +0200 Subject: [PATCH] uploading the implicit12 solver files I have designed a new solver that is faster than the default Rosenbrock solvers. This new solver is inspired by the IMEX solver. I developed it using the standard BE and Sdirk2a because an explicit method would not work for stiff problems. This new solver gave me a 5X speed-up when I used it with the ICON-ART model. The speed-up outweighed the minor loss in accuracy. There are two files added: - implicit12.f90 - implicit12.def --- int/implicit12.def | 20 + int/implicit12.f90 | 1662 ++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 1682 insertions(+) create mode 100644 int/implicit12.def create mode 100644 int/implicit12.f90 diff --git a/int/implicit12.def b/int/implicit12.def new file mode 100644 index 0000000..65cc672 --- /dev/null +++ b/int/implicit12.def @@ -0,0 +1,20 @@ + +#FUNCTION AGGREGATE +#JACOBIAN SPARSE_LU_ROW + +#DOUBLE ON +#INTFILE implicit12 + +#INLINE F77_GLOBAL + REAL*8 STEPSTART + COMMON /GDATA/ STEPSTART +#ENDINLINE + +#INLINE F77_INIT + STEPMIN=0.0001 + STEPMAX=3600. + STEPSTART=STEPMIN +#ENDINLINE + + + diff --git a/int/implicit12.f90 b/int/implicit12.f90 new file mode 100644 index 0000000..2921731 --- /dev/null +++ b/int/implicit12.f90 @@ -0,0 +1,1662 @@ +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~! +! IMPLICIT12 solver: ! +! - Backward Euler: L-stable, 1 stage, order 1 ! +! with the Fixed step size = RCNTRL(3) = Hstart ! +! - Adaptive Sdirk 2a: L-stable, 2 stage, order 2 ! +! with automatic step size slection ! +! ! +! Implementation by Maqsood Mubarak Rajput ! +! Karlsruhe Institute of Technology (KIT) ! +! ! +! By default the code employs the KPP sparse linear algebra routines ! +! Compile with -DFULL_ALGEBRA to use full linear algebra (LAPACK) ! +! ! +! (C) Adrian Sandu, July 2005 ! +! Virginia Polytechnic Institute and State University ! +! Contact: sandu@cs.vt.edu ! +! Revised by Philipp Miehe and Adrian Sandu, May 2006 ! +! Backward Euler added by Adrian Sandu, December 2012 ! +! This implementation is part of KPP - the Kinetic PreProcessor ! +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~! + +! For Backward Euler: +! Difference from the original implementation +! ICNTRL and RCNTRL are dummy variables except: +! ICNTRL(5) number of newton iterations +! RCNTRL(8) ThetaMin: decides whether the Jacobian should be recomputed +! RCNTRL(9) Stopping criterion for Newton's method + +! In case BE with fixed time step does not converge in 10 Newton iterations +! the code switches to the Adaptive Sdirk 2a + + +MODULE KPP_ROOT_Integrator + + USE KPP_ROOT_Precision + USE KPP_ROOT_Global, ONLY: FIX, RCONST, TIME + USE KPP_ROOT_Parameters, ONLY: NVAR, NSPEC, NFIX, LU_NONZERO + USE KPP_ROOT_JacobianSP, ONLY: LU_DIAG + USE KPP_ROOT_LinearAlgebra, ONLY: KppDecomp, & + KppSolve, Set2zero, WLAMCH, WCOPY, WAXPY, WSCAL, WADD + + IMPLICIT NONE + PUBLIC + SAVE + +!~~~> Statistics on the work performed by the SDIRK method + INTEGER, PARAMETER :: Nfun=1, Njac=2, Nstp=3, Nacc=4, & + Nrej=5, Ndec=6, Nsol=7, Nsng=8, & + Ntexit=1, Nhexit=2, Nhnew=3 + + ! description of the error numbers IERR + CHARACTER(LEN=50), PARAMETER, DIMENSION(-1:1) :: IERR_NAMES = (/ & + 'DUMMY ERROR MESSAGE ', & ! -1 + ' ', & ! 0 (not used) + 'Success ' /) ! 1 + +CONTAINS + +SUBROUTINE INTEGRATE( TIN, TOUT, & + ICNTRL_U, RCNTRL_U, ISTATUS_U, RSTATUS_U, Ierr_U ) + + USE KPP_ROOT_Parameters + USE KPP_ROOT_Global + IMPLICIT NONE + + KPP_REAL, INTENT(IN) :: TIN ! Start Time + KPP_REAL, INTENT(IN) :: TOUT ! End Time + ! Optional input parameters and statistics + INTEGER, INTENT(IN), OPTIONAL :: ICNTRL_U(20) + KPP_REAL, INTENT(IN), OPTIONAL :: RCNTRL_U(20) + INTEGER, INTENT(OUT), OPTIONAL :: ISTATUS_U(20) + KPP_REAL, INTENT(OUT), OPTIONAL :: RSTATUS_U(20) + INTEGER, INTENT(OUT), OPTIONAL :: Ierr_U + + INTEGER, SAVE :: Ntotal = 0 + KPP_REAL :: RCNTRL(20), RSTATUS(20), T1, T2 + INTEGER :: ICNTRL(20), ISTATUS(20), Ierr + + ICNTRL(:) = 0 + RCNTRL(:) = 0.0_dp + ISTATUS(:) = 0 + RSTATUS(:) = 0.0_dp + + !~~~> fine-tune the integrator: + ICNTRL(2) = 0 ! 0 - vector tolerances, 1 - scalar tolerances + ICNTRL(6) = 0 ! starting values of Newton iterations: interpolated (0), zero (1) + ! If optional parameters are given, and if they are >0, + ! then they overwrite default settings. + IF (PRESENT(ICNTRL_U)) THEN + WHERE(ICNTRL_U(:) > 0) ICNTRL(:) = ICNTRL_U(:) + END IF + IF (PRESENT(RCNTRL_U)) THEN + WHERE(RCNTRL_U(:) > 0) RCNTRL(:) = RCNTRL_U(:) + END IF + + + T1 = TIN; T2 = TOUT + CALL SDIRK( NVAR,T1,T2,VAR,RTOL,ATOL, & + RCNTRL,ICNTRL,RSTATUS,ISTATUS,Ierr ) + + !~~~> Debug option: print number of steps + ! Ntotal = Ntotal + ISTATUS(Nstp) + ! PRINT*,'NSTEPS=',ISTATUS(Nstp), '(',Ntotal,')',' O3=',VAR(ind_O3), & + ! ' NO2=',VAR(ind_NO2) + + IF (Ierr < 0) THEN + PRINT *,'SDIRK: Unsuccessful exit at T=',TIN,' (Ierr=',Ierr,')' + ENDIF + + ! if optional parameters are given for output they to return information + IF (PRESENT(ISTATUS_U)) ISTATUS_U(:) = ISTATUS(:) + IF (PRESENT(RSTATUS_U)) RSTATUS_U(:) = RSTATUS(:) + IF (PRESENT(Ierr_U)) Ierr_U = Ierr + + END SUBROUTINE INTEGRATE + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE SDIRK(N, Tinitial, Tfinal, Y, RelTol, AbsTol, & + RCNTRL, ICNTRL, RSTATUS, ISTATUS, Ierr) +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +! +! Solves the system y'=F(t,y) using a Singly-Diagonally-Implicit +! Runge-Kutta (SDIRK) method. +! +! This implementation is based on the book and the code Sdirk4: +! +! E. Hairer and G. Wanner +! "Solving ODEs II. Stiff and differential-algebraic problems". +! Springer series in computational mathematics, Springer-Verlag, 1996. +! This code is based on the SDIRK4 routine in the above book. +! +! Methods: +! * Sdirk 2a, 2b: L-stable, 2 stages, order 2 +! * Sdirk 3a: L-stable, 3 stages, order 2, adjoint-invariant +! * Sdirk 4a, 4b: L-stable, 5 stages, order 4 +! * Backward Euler: L-stable, 1 stage, order 1 +! Fixed step size = RCNTRL(3) = Hstart +! +! (C) Adrian Sandu, July 2005 +! Virginia Polytechnic Institute and State University +! Contact: sandu@cs.vt.edu +! Revised by Philipp Miehe and Adrian Sandu, May 2006 +! Backward Euler added by Adrian Sandu, Dec. 2012 +! This implementation is part of KPP - the Kinetic PreProcessor +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +! +!~~~> INPUT ARGUMENTS: +! +!- Y(NVAR) = vector of initial conditions (at T=Tinitial) +!- [Tinitial,Tfinal] = time range of integration +! (if Tinitial>Tfinal the integration is performed backwards in time) +!- RelTol, AbsTol = user precribed accuracy +!- SUBROUTINE ode_Fun( T, Y, Ydot ) = ODE function, +! returns Ydot = Y' = F(T,Y) +!- SUBROUTINE ode_Fun( T, Y, Ydot ) = Jacobian of the ODE function, +! returns Jcb = dF/dY +!- ICNTRL(1:20) = integer inputs parameters +!- RCNTRL(1:20) = real inputs parameters +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +! +!~~~> OUTPUT ARGUMENTS: +! +!- Y(NVAR) -> vector of final states (at T->Tfinal) +!- ISTATUS(1:20) -> integer output parameters +!- RSTATUS(1:20) -> real output parameters +!- Ierr -> job status upon return +! success (positive value) or +! failure (negative value) +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +! +!~~~> INPUT PARAMETERS: +! +! Note: For input parameters equal to zero the default values of the +! corresponding variables are used. +! +! Note: For input parameters equal to zero the default values of the +! corresponding variables are used. +!~~~> +! ICNTRL(1) = not used +! +! ICNTRL(2) = 0: AbsTol, RelTol are NVAR-dimensional vectors +! = 1: AbsTol, RelTol are scalars +! +! ICNTRL(3) = Method +! +! ICNTRL(4) -> maximum number of integration steps +! For ICNTRL(4)=0 the default value of 100000 is used +! +! ICNTRL(5) -> maximum number of Newton iterations +! For ICNTRL(5)=0 the default value of 8 is used +! +! ICNTRL(6) -> starting values of Newton iterations: +! ICNTRL(6)=0 : starting values are interpolated (the default) +! ICNTRL(6)=1 : starting values are zero +! +!~~~> Real parameters +! +! RCNTRL(1) -> Hmin, lower bound for the integration step size +! It is strongly recommended to keep Hmin = ZERO +! RCNTRL(2) -> Hmax, upper bound for the integration step size +! RCNTRL(3) -> Hstart, starting value for the integration step size +! +! RCNTRL(4) -> FacMin, lower bound on step decrease factor (default=0.2) +! RCNTRL(5) -> FacMax, upper bound on step increase factor (default=6) +! RCNTRL(6) -> FacRej, step decrease factor after multiple rejections +! (default=0.1) +! RCNTRL(7) -> FacSafe, by which the new step is slightly smaller +! than the predicted value (default=0.9) +! RCNTRL(8) -> ThetaMin. If Newton convergence rate smaller +! than ThetaMin the Jacobian is not recomputed; +! (default=0.001) +! RCNTRL(9) -> NewtonTol, stopping criterion for Newton's method +! (default=0.03) +! RCNTRL(10) -> Qmin +! RCNTRL(11) -> Qmax. If Qmin < Hnew/Hold < Qmax, then the +! step size is kept constant and the LU factorization +! reused (default Qmin=1, Qmax=1.2) +! +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +! +!~~~> OUTPUT PARAMETERS: +! +! Note: each call to Rosenbrock adds the current no. of fcn calls +! to previous value of ISTATUS(1), and similar for the other params. +! Set ISTATUS(1:10) = 0 before call to avoid this accumulation. +! +! ISTATUS(1) = No. of function calls +! ISTATUS(2) = No. of jacobian calls +! ISTATUS(3) = No. of steps +! ISTATUS(4) = No. of accepted steps +! ISTATUS(5) = No. of rejected steps (except at the beginning) +! ISTATUS(6) = No. of LU decompositions +! ISTATUS(7) = No. of forward/backward substitutions +! ISTATUS(8) = No. of singular matrix decompositions +! +! RSTATUS(1) -> Texit, the time corresponding to the +! computed Y upon return +! RSTATUS(2) -> Hexit,last accepted step before return +! RSTATUS(3) -> Hnew, last predicted step before return +! For multiple restarts, use Hnew as Hstart in the following run +! +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + IMPLICIT NONE + +! Arguments + INTEGER, INTENT(IN) :: N, ICNTRL(20) + KPP_REAL, INTENT(IN) :: Tinitial, Tfinal, & + RelTol(NVAR), AbsTol(NVAR), RCNTRL(20) + KPP_REAL, INTENT(INOUT) :: Y(NVAR) + INTEGER, INTENT(OUT) :: Ierr + INTEGER, INTENT(INOUT) :: ISTATUS(20) + KPP_REAL, INTENT(OUT) :: RSTATUS(20) + +!~~~> SDIRK method coefficients, up to 5 stages + INTEGER, PARAMETER :: Smax = 5 + INTEGER, PARAMETER :: S2A=1, S2B=2, S3A=3, S4A=4, S4B=5, BEL=6 + KPP_REAL :: rkGamma, rkA(Smax,Smax), rkB(Smax), rkC(Smax), & + rkD(Smax), rkE(Smax), rkBhat(Smax), rkELO, & + rkAlpha(Smax,Smax), rkTheta(Smax,Smax) + INTEGER :: sdMethod, rkS ! The number of stages +! Local variables + LOGICAL :: StartNewton + KPP_REAL :: Hmin, Hmax, Hstart, Roundoff, & + FacMin, Facmax, FacSafe, FacRej, & + ThetaMin, NewtonTol, Qmin, Qmax + INTEGER :: ITOL, NewtonMaxit, Max_no_steps, i + KPP_REAL, PARAMETER :: ZERO = 0.0d0, ONE = 1.0d0 + + + ISTATUS(1:20) = 0 + RSTATUS(1:20) = ZERO + Ierr = 0 + +!~~~> For Scalar tolerances (ICNTRL(2).NE.0) the code uses AbsTol(1) and RelTol(1) +! For Vector tolerances (ICNTRL(2) == 0) the code uses AbsTol(1:NVAR) and RelTol(1:NVAR) + IF (ICNTRL(2) == 0) THEN + ITOL = 1 + ELSE + ITOL = 0 + END IF + +!~~~> ICNTRL(3) - method selection +! CASE (0,1) +! CALL Sdirk2a +! CASE (2) +! CALL Sdirk2b +! CASE (3) +! CALL Sdirk3a +! CASE (4) +! CALL Sdirk4a +! CASE (5) +! CALL Sdirk4b +! CASE (6) +! CALL BE +! CASE DEFAULT +! CALL Sdirk2a +! END SELECT + +!~~~> Method selection + CALL BEuler + + +!~~~> The maximum number of time steps admitted + IF (ICNTRL(4) == 0) THEN + Max_no_steps = 200000 + ELSEIF (ICNTRL(4) > 0) THEN + Max_no_steps=ICNTRL(4) + ELSE + PRINT * ,'User-selected ICNTRL(4)=',ICNTRL(4) + CALL SDIRK_ErrorMsg(-1,Tinitial,ZERO,Ierr) + END IF + +!~~~> The maximum number of Newton iterations admitted + IF(ICNTRL(5) == 0)THEN + NewtonMaxit=10 + ELSE + NewtonMaxit=ICNTRL(5) + IF(NewtonMaxit <= 0)THEN + PRINT * ,'User-selected ICNTRL(5)=',ICNTRL(5) + CALL SDIRK_ErrorMsg(-2,Tinitial,ZERO,Ierr) + END IF + END IF + +!~~~> StartNewton: Use extrapolation for starting values of Newton iterations + IF (ICNTRL(6) == 0) THEN + StartNewton = .TRUE. + ELSE + StartNewton = .FALSE. + END IF + +!~~~> Unit roundoff (1+Roundoff>1) + Roundoff = WLAMCH('E') + +!~~~> Lower bound on the step size: (positive value) + IF (RCNTRL(1) == ZERO) THEN + Hmin = ZERO + ELSEIF (RCNTRL(1) > ZERO) THEN + Hmin = RCNTRL(1) + ELSE + PRINT * , 'User-selected RCNTRL(1)=', RCNTRL(1) + CALL SDIRK_ErrorMsg(-3,Tinitial,ZERO,Ierr) + END IF + +!~~~> Upper bound on the step size: (positive value) + IF (RCNTRL(2) == ZERO) THEN + Hmax = ABS(Tfinal-Tinitial) + ELSEIF (RCNTRL(2) > ZERO) THEN + Hmax = MIN(ABS(RCNTRL(2)),ABS(Tfinal-Tinitial)) + ELSE + PRINT * , 'User-selected RCNTRL(2)=', RCNTRL(2) + CALL SDIRK_ErrorMsg(-3,Tinitial,ZERO,Ierr) + END IF + +!~~~> Starting step size: (positive value) + IF (RCNTRL(3) == ZERO) THEN + Hstart = MAX(Hmin,101.*Roundoff) ! factor 101 added mz_rs_20171120 + ELSEIF (RCNTRL(3) > ZERO) THEN + Hstart = MIN(ABS(RCNTRL(3)),ABS(Tfinal-Tinitial)) + ELSE + PRINT * , 'User-selected Hstart: RCNTRL(3)=', RCNTRL(3) + CALL SDIRK_ErrorMsg(-3,Tinitial,ZERO,Ierr) + END IF + +!~~~> Step size can be changed s.t. FacMin < Hnew/Hexit < FacMax + IF (RCNTRL(4) == ZERO) THEN + !FacMin = 0.2_dp + FacMin = 1.0_dp + ELSEIF (RCNTRL(4) > ZERO) THEN + !FacMin = RCNTRL(4) + FacMin = 1.0_dp + ELSE + PRINT * , 'User-selected FacMin: RCNTRL(4)=', RCNTRL(4) + CALL SDIRK_ErrorMsg(-4,Tinitial,ZERO,Ierr) + END IF + IF (RCNTRL(5) == ZERO) THEN + !FacMax = 10.0_dp + FacMax = 1.0_dp + ELSEIF (RCNTRL(5) > ZERO) THEN + !FacMax = RCNTRL(5) + FacMax = 1.0_dp + ELSE + PRINT * , 'User-selected FacMax: RCNTRL(5)=', RCNTRL(5) + CALL SDIRK_ErrorMsg(-4,Tinitial,ZERO,Ierr) + END IF +!~~~> FacRej: Factor to decrease step after 2 succesive rejections + IF (RCNTRL(6) == ZERO) THEN + !FacRej = 0.1_dp + FacRej = 1.0_dp + ELSEIF (RCNTRL(6) > ZERO) THEN + !FacRej = RCNTRL(6) + FacRej = 1.0_dp + ELSE + PRINT * , 'User-selected FacRej: RCNTRL(6)=', RCNTRL(6) + CALL SDIRK_ErrorMsg(-4,Tinitial,ZERO,Ierr) + END IF +!~~~> FacSafe: Safety Factor in the computation of new step size + IF (RCNTRL(7) == ZERO) THEN + !FacSafe = 0.9_dp + FacSafe = 1.0_dp + ELSEIF (RCNTRL(7) > ZERO) THEN + !FacSafe = RCNTRL(7) + FacSafe = 1.0_dp + ELSE + PRINT * , 'User-selected FacSafe: RCNTRL(7)=', RCNTRL(7) + CALL SDIRK_ErrorMsg(-4,Tinitial,ZERO,Ierr) + END IF + +!~~~> ThetaMin: decides whether the Jacobian should be recomputed + IF(RCNTRL(8) == 0.D0)THEN + ThetaMin = 1.0d-3 + ELSE + ThetaMin = RCNTRL(8) + END IF + +!~~~> Stopping criterion for Newton's method + IF(RCNTRL(9) == ZERO)THEN + NewtonTol = 1.0d-3 + ELSE + NewtonTol = RCNTRL(9) + END IF + +!~~~> Qmin, Qmax: IF Qmin < Hnew/Hold < Qmax, STEP SIZE = CONST. + IF(RCNTRL(10) == ZERO)THEN + Qmin=ONE + ELSE + Qmin=RCNTRL(10) + END IF + IF(RCNTRL(11) == ZERO)THEN + Qmax=1.2D0 + ELSE + Qmax=RCNTRL(11) + END IF + +!~~~> Check if tolerances are reasonable + IF (ITOL == 0) THEN + IF (AbsTol(1) <= ZERO .OR. RelTol(1) <= 10.D0*Roundoff) THEN + PRINT * , ' Scalar AbsTol = ',AbsTol(1) + PRINT * , ' Scalar RelTol = ',RelTol(1) + CALL SDIRK_ErrorMsg(-5,Tinitial,ZERO,Ierr) + END IF + ELSE + DO i=1,N + IF (AbsTol(i) <= 0.D0.OR.RelTol(i) <= 10.D0*Roundoff) THEN + PRINT * , ' AbsTol(',i,') = ',AbsTol(i) + PRINT * , ' RelTol(',i,') = ',RelTol(i) + CALL SDIRK_ErrorMsg(-5,Tinitial,ZERO,Ierr) + END IF + END DO + END IF + +!~~~> Special treatment of backward Euler + !IF (sdMethod == BEL) THEN + StartNewton = .FALSE. + FacMin = 1.0_dp + FacMax = 1.0_dp + FacSafe= 1.0_dp + FacRej = 1.0_dp + Qmin = 1.0_dp + Qmax = 1.0_dp + Hmax = Hstart + IF ( Hstart <= 100_dp*Roundoff ) THEN + PRINT * , ' Backward Euler calling error:' + PRINT * , ' it requires Hstart > 100*Roundoff' + STOP + END IF + !END IF + + + IF (Ierr < 0) RETURN + + CALL SDIRK_Integrator( N,Tinitial,Tfinal,Y,Ierr ) + + + !END SUBROUTINE SDIRK + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + CONTAINS ! PROCEDURES INTERNAL TO SDIRK +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE SDIRK_Integrator( N,Tinitial,Tfinal,Y,Ierr ) +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + USE KPP_ROOT_Parameters + IMPLICIT NONE + +!~~~> Arguments: + INTEGER, INTENT(IN) :: N + KPP_REAL, INTENT(INOUT) :: Y(NVAR) + KPP_REAL, INTENT(IN) :: Tinitial, Tfinal + INTEGER, INTENT(OUT) :: Ierr + +!~~~> Local variables: + KPP_REAL :: Z(NVAR), NewtonRate, SCAL(NVAR), RHS(NVAR),T,Tdirection, H, & + Theta, NewtonPredictedErr,NewtonIncrement, NewtonIncrementOld + INTEGER :: j, IER, NewtonIter, IP(NVAR) + LOGICAL :: NewtonDone + +#ifdef FULL_ALGEBRA + KPP_REAL FJAC(NVAR,NVAR), E(NVAR,NVAR) +#else + KPP_REAL FJAC(LU_NONZERO), E(LU_NONZERO) +#endif + KPP_REAL, PARAMETER :: ZERO = 0.0d0, ONE = 1.0d0 + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +!~~~> Initializations +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + T = Tinitial + Tdirection = SIGN(ONE,Tfinal-Tinitial) + H = (Tfinal - Tinitial)*Tdirection + !print *,'H ',H + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +!~~~> Simplified Newton iterations +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +!~~~> Starting values for Newton iterations + CALL Set2zero(N,Z) + CALL WADD(N,Y,Z,Z) ! Zi <- Y + Zi + NewtonDone = .FALSE. + +NewtonLoop:DO NewtonIter = 1, NewtonMaxit + ! print *,'stage ',1, ' Newton Iteration ', NewtonIter + ! Compute (I-H*Jac) and its LU decomposition + CALL SDIRK_PrepareMatrix ( H, T, Z, FJAC, E, IP, IER ) + ! RHS(:) = Z - Y - H*Fun(Z) + CALL FUN_CHEM(T+H,Z,RHS) + ISTATUS(Nfun) = ISTATUS(Nfun) + 1 + CALL WSCAL(N,-H, RHS, 1) + CALL WAXPY (N, -ONE, Y , 1, RHS, 1) + CALL WADD(N,Z,RHS,RHS) + +!~~~> Solve the linear system + CALL SDIRK_Solve ( H, N, E, IP, IER, RHS ) +!~~~> Check convergence of Newton iterations + !CALL SDIRK_ErrorScale(N, ITOL, AbsTol, RelTol, RHS, SCAL) + ! Do not need to scale the solution in case of a fixed timestep. + SCAL(:) = ONE + ! computing l2 error in without scaling in case a fixed timestep. + CALL SDIRK_ErrorNorm(N, RHS, SCAL, NewtonIncrement) + IF ( NewtonIter == 1 ) THEN + Theta = ABS(ThetaMin) + NewtonRate = 2.0d0 + ELSE + Theta = NewtonIncrement/NewtonIncrementOld + IF (Theta < 0.99d0) THEN + NewtonRate = Theta/(ONE-Theta) + ! Predict error at the end of Newton process + NewtonPredictedErr = NewtonIncrement & + *Theta**(NewtonMaxit-NewtonIter)/(ONE-Theta) + IF (NewtonPredictedErr >= NewtonTol) THEN + ! Update solution: Z(:) <-- Z(:)-RHS(:) + CALL WAXPY(N,-ONE,RHS,1,Z,1) + CYCLE NewtonLoop + END IF + END IF + END IF + + IF (NewtonIter > NewtonMaxit) THEN ! Non-convergence of Newton: Theta too large + print *,'BE-Newton didnt converge! Exceeded the number of iterations' + EXIT NewtonLoop + END IF + NewtonIncrementOld = NewtonIncrement + ! Update solution: Z(:) <-- Z(:)-RHS(:) + CALL WAXPY(N,-ONE,RHS,1,Z,1) + ! Check error in Newton iterations + NewtonDone = (NewtonRate*NewtonIncrement <= NewtonTol) + IF (NewtonDone) EXIT NewtonLoop +END DO NewtonLoop + + IF (.NOT.NewtonDone) THEN + print *,'using SDIRK2!' + CALL Sdirk2a + CALL SDIRK2_Integrator( N,Tinitial,Tfinal,Y,Ierr ) + ELSE + ISTATUS(Nstp) = ISTATUS(Nstp) + 1 + CALL Set2zero(N,Y) + CALL WAXPY(N,ONE,Z,1,Y,1) + END IF + +!~~~> End of simplified Newton iterations + + ! Successful return + Ierr = 1 + + END SUBROUTINE SDIRK_Integrator + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE SDIRK_ErrorScale(N, ITOL, AbsTol, RelTol, Y, SCAL) +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +! Do not need this function in case of the fixed timestep + IMPLICIT NONE + INTEGER :: i, N, ITOL + KPP_REAL :: AbsTol(NVAR), RelTol(NVAR), & + Y(NVAR), SCAL(NVAR) + IF (ITOL == 0) THEN + DO i=1,NVAR + SCAL(i) = ONE / ( AbsTol(1)+RelTol(1)*ABS(Y(i)) ) + END DO + ELSE + DO i=1,NVAR + SCAL(i) = ONE / ( AbsTol(i)+RelTol(i)*ABS(Y(i)) ) + END DO + END IF + END SUBROUTINE SDIRK_ErrorScale + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE SDIRK_ErrorNorm(N, Y, SCAL, Err) +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +! In case of the fixed timestep, l2 norm is computed. +! do not need SCAL + INTEGER :: i, N + KPP_REAL :: Y(N), SCAL(N), Err + Err = ZERO + SCAL(:) = ONE + DO i=1,N + Err = Err+(Y(i))**2 + END DO + Err = MAX( SQRT(Err/DBLE(N)), 1.0d-10 ) + END SUBROUTINE SDIRK_ErrorNorm + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE SDIRK_ErrorMsg(Code,T,H,Ierr) +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +! Handles all error messages +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + KPP_REAL, INTENT(IN) :: T, H + INTEGER, INTENT(IN) :: Code + INTEGER, INTENT(OUT) :: Ierr + + Ierr = Code + PRINT * , & + 'Forced exit from SDIRK due to the following error:' + + SELECT CASE (Code) + CASE (-1) + PRINT * , '--> Improper value for maximal no of steps' + CASE (-2) + PRINT * , '--> Improper value for maximal no of Newton iterations' + CASE (-3) + PRINT * , '--> Hmin/Hmax/Hstart must be positive' + CASE (-4) + PRINT * , '--> FacMin/FacMax/FacRej must be positive' + CASE (-5) + PRINT * , '--> Improper tolerance values' + CASE (-6) + PRINT * , '--> No of steps exceeds maximum bound' + CASE (-7) + PRINT * , '--> Step size too small: T + 10*H = T', & + ' or H < Roundoff' + CASE (-8) + PRINT * , '--> Matrix is repeatedly singular' + CASE DEFAULT + PRINT *, 'Unknown Error code: ', Code + END SELECT + + PRINT *, "T=", T, "and H=", H + + END SUBROUTINE SDIRK_ErrorMsg + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE SDIRK_PrepareMatrix ( H, T, Y, FJAC, E, IP, ISING ) +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +!~~~> Compute the matrix E = (I-H*Jac), and its LU decomposition +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +! No looping or reducing the timestep in case of the fixed timestep + IMPLICIT NONE + + KPP_REAL, INTENT(INOUT) :: H + KPP_REAL, INTENT(IN) :: T, Y(NVAR) + INTEGER, INTENT(OUT) :: ISING, IP(NVAR) +#ifdef FULL_ALGEBRA + KPP_REAL, INTENT(INOUT) :: FJAC(NVAR,NVAR) + KPP_REAL, INTENT(OUT) :: E(NVAR,NVAR) +#else + KPP_REAL, INTENT(INOUT) :: FJAC(LU_NONZERO) + KPP_REAL, INTENT(OUT) :: E(LU_NONZERO) +#endif + INTEGER :: i, j + + ISING = 1 + + CALL JAC_CHEM( T, Y, FJAC ) + ISTATUS(Njac) = ISTATUS(Njac) + 1 + +#ifdef FULL_ALGEBRA + DO j=1,NVAR + DO i=1,NVAR + E(i,j) = -H*FJAC(i,j) + END DO + E(j,j) = E(j,j)+ONE + END DO + CALL DGETRF( NVAR, NVAR, E, NVAR, IP, ISING ) +#else + DO i = 1,LU_NONZERO + E(i) = -H*FJAC(i) + END DO + DO i = 1,NVAR + j = LU_DIAG(i); E(j) = E(j)+ONE + END DO + CALL KppDecomp ( E, ISING) + IP(1) = 1 +#endif + ISTATUS(Ndec) = ISTATUS(Ndec) + 1 + + + IF (ISING /= 0) THEN + WRITE (6,*) ' MATRIX IS SINGULAR, ISING=',ISING,' T=',T,' H=',H + END IF + + END SUBROUTINE SDIRK_PrepareMatrix + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE SDIRK_Solve ( H, N, E, IP, ISING, RHS ) +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +!~~~> Solves the system E*x = RHS +! using the LU decomposition of E = I - H*Jac +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + IMPLICIT NONE + INTEGER, INTENT(IN) :: N, IP(N), ISING + KPP_REAL, INTENT(IN) :: H +#ifdef FULL_ALGEBRA + KPP_REAL, INTENT(IN) :: E(NVAR,NVAR) +#else + KPP_REAL, INTENT(IN) :: E(LU_NONZERO) +#endif + KPP_REAL, INTENT(INOUT) :: RHS(N) + +#ifdef FULL_ALGEBRA + CALL DGETRS( 'N', N, 1, E, N, IP, RHS, N, ISING ) +#else + CALL KppSolve(E, RHS) +#endif + ISTATUS(Nsol) = ISTATUS(Nsol) + 1 + + END SUBROUTINE SDIRK_Solve + +!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE SDIRK2_Integrator( N,Tinitial,Tfinal,Y,Ierr ) +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + USE KPP_ROOT_Parameters + IMPLICIT NONE + +!~~~> Arguments: + INTEGER, INTENT(IN) :: N + KPP_REAL, INTENT(INOUT) :: Y(NVAR) + KPP_REAL, INTENT(IN) :: Tinitial, Tfinal + INTEGER, INTENT(OUT) :: Ierr + +!~~~> Local variables: + KPP_REAL :: Z(NVAR,Smax), G(NVAR), TMP(NVAR), & + NewtonRate, SCAL(NVAR), RHS(NVAR), & + T, H, Theta, Hratio, NewtonPredictedErr, & + Qnewton, Err, Fac, Hnew,Tdirection, & + NewtonIncrement, NewtonIncrementOld + INTEGER :: j, IER, istage, NewtonIter, IP(NVAR) + LOGICAL :: Reject, FirstStep, SkipJac, SkipLU, NewtonDone + +#ifdef FULL_ALGEBRA + KPP_REAL FJAC(NVAR,NVAR), E(NVAR,NVAR) +#else + KPP_REAL FJAC(LU_NONZERO), E(LU_NONZERO) +#endif + KPP_REAL, PARAMETER :: ZERO = 0.0d0, ONE = 1.0d0 + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +!~~~> Initializations +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + T = Tinitial + Tdirection = SIGN(ONE,Tfinal-Tinitial) + H = MAX(ABS(Hmin),ABS(Hstart)) + IF (ABS(H) <= 10.D0*Roundoff) H=1.0D-6 + H=MIN(ABS(H),Hmax) + H=SIGN(H,Tdirection) + SkipLU =.FALSE. + SkipJac = .FALSE. + Reject=.FALSE. + FirstStep=.TRUE. + + CALL SDIRK2_ErrorScale(N, ITOL, AbsTol, RelTol, Y, SCAL) + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +!~~~> Time loop begins +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Tloop: DO WHILE ( (Tfinal-T)*Tdirection - Roundoff > ZERO ) + + +!~~~> Compute E = 1/(h*gamma)-Jac and its LU decomposition + IF ( .NOT.SkipLU ) THEN ! This time around skip the Jac update and LU + CALL SDIRK2_PrepareMatrix ( H, T, Y, FJAC, & + SkipJac, SkipLU, E, IP, Reject, IER ) + IF (IER /= 0) THEN + CALL SDIRK2_ErrorMsg(-8,T,H,Ierr); RETURN + END IF + END IF + + IF (ISTATUS(Nstp) > Max_no_steps) THEN + CALL SDIRK2_ErrorMsg(-6,T,H,Ierr); RETURN + END IF + IF ( (T+0.1d0*H == T) .OR. (ABS(H) <= Roundoff) ) THEN + CALL SDIRK2_ErrorMsg(-7,T,H,Ierr); RETURN + END IF + +stages:DO istage = 1, rkS + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +!~~~> Simplified Newton iterations +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +!~~~> Starting values for Newton iterations + CALL Set2zero(N,Z(1,istage)) + +!~~~> Prepare the loop-independent part of the right-hand side + CALL Set2zero(N,G) + IF (istage > 1) THEN + DO j = 1, istage-1 + ! Gj(:) = sum_j Theta(i,j)*Zj(:) = H * sum_j A(i,j)*Fun(Zj) + CALL WAXPY(N,rkTheta(istage,j),Z(1,j),1,G,1) + ! Zi(:) = sum_j Alpha(i,j)*Zj(:) + IF (StartNewton) THEN + CALL WAXPY(N,rkAlpha(istage,j),Z(1,j),1,Z(1,istage),1) + END IF + END DO + END IF + + !~~~> Initializations for Newton iteration + NewtonDone = .FALSE. + Fac = 0.5d0 ! Step reduction factor if too many iterations + +NewtonLoop:DO NewtonIter = 1, NewtonMaxit + +!~~~> Prepare the loop-dependent part of the right-hand side + CALL WADD(N,Y,Z(1,istage),TMP) ! TMP <- Y + Zi + CALL FUN_CHEM(T+rkC(istage)*H,TMP,RHS) ! RHS <- Fun(Y+Zi) + ISTATUS(Nfun) = ISTATUS(Nfun) + 1 +! RHS(1:N) = G(1:N) - Z(1:N,istage) + (H*rkGamma)*RHS(1:N) + CALL WSCAL(N, H*rkGamma, RHS, 1) + CALL WAXPY (N, -ONE, Z(1,istage), 1, RHS, 1) + CALL WAXPY (N, ONE, G,1, RHS,1) + +!~~~> Solve the linear system + CALL SDIRK2_Solve ( H, N, E, IP, IER, RHS ) + +!~~~> Check convergence of Newton iterations + CALL SDIRK2_ErrorNorm(N, RHS, SCAL, NewtonIncrement) + IF ( NewtonIter == 1 ) THEN + Theta = ABS(ThetaMin) + NewtonRate = 2.0d0 + ELSE + Theta = NewtonIncrement/NewtonIncrementOld + IF (Theta < 0.99d0) THEN + NewtonRate = Theta/(ONE-Theta) + ! Predict error at the end of Newton process + NewtonPredictedErr = NewtonIncrement & + *Theta**(NewtonMaxit-NewtonIter)/(ONE-Theta) + IF (NewtonPredictedErr >= NewtonTol) THEN + ! Non-convergence of Newton: predicted error too large + Qnewton = MIN(10.0d0,NewtonPredictedErr/NewtonTol) + Fac = 0.8d0*Qnewton**(-ONE/(1+NewtonMaxit-NewtonIter)) + EXIT NewtonLoop + END IF + ELSE ! Non-convergence of Newton: Theta too large + EXIT NewtonLoop + END IF + END IF + NewtonIncrementOld = NewtonIncrement + ! Update solution: Z(:) <-- Z(:)+RHS(:) + CALL WAXPY(N,ONE,RHS,1,Z(1,istage),1) + + ! Check error in Newton iterations + NewtonDone = (NewtonRate*NewtonIncrement <= NewtonTol) + IF (NewtonDone) EXIT NewtonLoop + + END DO NewtonLoop + + IF (.NOT.NewtonDone) THEN + !CALL RK_ErrorMsg(-12,T,H,Ierr); + H = Fac*H; Reject=.TRUE. + SkipJac = .TRUE.; SkipLU = .FALSE. + CYCLE Tloop + END IF + +!~~~> End of implified Newton iterations + + + END DO stages + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +!~~~> Error estimation +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + ISTATUS(Nstp) = ISTATUS(Nstp) + 1 + CALL Set2zero(N,TMP) + DO i = 1,rkS + IF (rkE(i)/=ZERO) CALL WAXPY(N,rkE(i),Z(1,i),1,TMP,1) + END DO + + CALL SDIRK2_Solve( H, N, E, IP, IER, TMP ) + CALL SDIRK2_ErrorNorm(N, TMP, SCAL, Err) + +!~~~> Computation of new step size Hnew + Fac = FacSafe*(Err)**(-ONE/rkELO) + Fac = MAX(FacMin,MIN(FacMax,Fac)) + Hnew = H*Fac + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +!~~~> Accept/Reject step +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +accept: IF ( Err < ONE ) THEN !~~~> Step is accepted + + FirstStep=.FALSE. + ISTATUS(Nacc) = ISTATUS(Nacc) + 1 + +!~~~> Update time and solution + T = T + H + ! Y(:) <-- Y(:) + Sum_j rkD(j)*Z_j(:) + DO i = 1,rkS + IF (rkD(i)/=ZERO) CALL WAXPY(N,rkD(i),Z(1,i),1,Y,1) + END DO + +!~~~> Update scaling coefficients + CALL SDIRK2_ErrorScale(N, ITOL, AbsTol, RelTol, Y, SCAL) + +!~~~> Next time step + Hnew = Tdirection*MIN(ABS(Hnew),Hmax) + ! Last T and H + RSTATUS(Ntexit) = T + RSTATUS(Nhexit) = H + RSTATUS(Nhnew) = Hnew + ! No step increase after a rejection + IF (Reject) Hnew = Tdirection*MIN(ABS(Hnew),ABS(H)) + Reject = .FALSE. + IF ((T+Hnew/Qmin-Tfinal)*Tdirection > ZERO) THEN + H = Tfinal-T + ELSE + Hratio=Hnew/H + ! If step not changed too much keep Jacobian and reuse LU + SkipLU = ( (Theta <= ThetaMin) .AND. (Hratio >= Qmin) & + .AND. (Hratio <= Qmax) ) + IF (.NOT.SkipLU) H = Hnew + END IF + ! If convergence is fast enough, do not update Jacobian +! SkipJac = (Theta <= ThetaMin) + SkipJac = .FALSE. + + ELSE accept !~~~> Step is rejected + + IF (FirstStep .OR. Reject) THEN + H = FacRej*H + ELSE + H = Hnew + END IF + Reject = .TRUE. + SkipJac = .TRUE. + SkipLU = .FALSE. + IF (ISTATUS(Nacc) >= 1) ISTATUS(Nrej) = ISTATUS(Nrej) + 1 + + END IF accept + + END DO Tloop + + ! Successful return + Ierr = 1 + + END SUBROUTINE SDIRK2_Integrator +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE SDIRK2_ErrorScale(N, ITOL, AbsTol, RelTol, Y, SCAL) +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + IMPLICIT NONE + INTEGER :: i, N, ITOL + KPP_REAL :: AbsTol(NVAR), RelTol(NVAR), & + Y(NVAR), SCAL(NVAR) + IF (ITOL == 0) THEN + DO i=1,NVAR + SCAL(i) = ONE / ( AbsTol(1)+RelTol(1)*ABS(Y(i)) ) + END DO + ELSE + DO i=1,NVAR + SCAL(i) = ONE / ( AbsTol(i)+RelTol(i)*ABS(Y(i)) ) + END DO + END IF + END SUBROUTINE SDIRK2_ErrorScale + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE SDIRK2_ErrorNorm(N, Y, SCAL, Err) +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +! + INTEGER :: i, N + KPP_REAL :: Y(N), SCAL(N), Err + Err = ZERO + DO i=1,N + Err = Err+(Y(i)*SCAL(i))**2 + END DO + Err = MAX( SQRT(Err/DBLE(N)), 1.0d-10 ) +! + END SUBROUTINE SDIRK2_ErrorNorm + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE SDIRK2_ErrorMsg(Code,T,H,Ierr) +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +! Handles all error messages +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + KPP_REAL, INTENT(IN) :: T, H + INTEGER, INTENT(IN) :: Code + INTEGER, INTENT(OUT) :: Ierr + + Ierr = Code + PRINT * , & + 'Forced exit from SDIRK due to the following error:' + + SELECT CASE (Code) + CASE (-1) + PRINT * , '--> Improper value for maximal no of steps' + CASE (-2) + PRINT * , '--> Improper value for maximal no of Newton iterations' + CASE (-3) + PRINT * , '--> Hmin/Hmax/Hstart must be positive' + CASE (-4) + PRINT * , '--> FacMin/FacMax/FacRej must be positive' + CASE (-5) + PRINT * , '--> Improper tolerance values' + CASE (-6) + PRINT * , '--> No of steps exceeds maximum bound' + CASE (-7) + PRINT * , '--> Step size too small: T + 10*H = T', & + ' or H < Roundoff' + CASE (-8) + PRINT * , '--> Matrix is repeatedly singular' + CASE DEFAULT + PRINT *, 'Unknown Error code: ', Code + END SELECT + + PRINT *, "T=", T, "and H=", H + + END SUBROUTINE SDIRK2_ErrorMsg + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE SDIRK2_PrepareMatrix ( H, T, Y, FJAC, & + SkipJac, SkipLU, E, IP, Reject, ISING ) +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +!~~~> Compute the matrix E = 1/(H*GAMMA)*Jac, and its decomposition +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + IMPLICIT NONE + + KPP_REAL, INTENT(INOUT) :: H + KPP_REAL, INTENT(IN) :: T, Y(NVAR) + LOGICAL, INTENT(INOUT) :: SkipJac,SkipLU,Reject + INTEGER, INTENT(OUT) :: ISING, IP(NVAR) +#ifdef FULL_ALGEBRA + KPP_REAL, INTENT(INOUT) :: FJAC(NVAR,NVAR) + KPP_REAL, INTENT(OUT) :: E(NVAR,NVAR) +#else + KPP_REAL, INTENT(INOUT) :: FJAC(LU_NONZERO) + KPP_REAL, INTENT(OUT) :: E(LU_NONZERO) +#endif + KPP_REAL :: HGammaInv + INTEGER :: i, j, ConsecutiveSng + + ConsecutiveSng = 0 + ISING = 1 + +Hloop: DO WHILE (ISING /= 0) + + HGammaInv = ONE/(H*rkGamma) + +!~~~> Compute the Jacobian +! IF (SkipJac) THEN +! SkipJac = .FALSE. +! ELSE + IF (.NOT. SkipJac) THEN + CALL JAC_CHEM( T, Y, FJAC ) + ISTATUS(Njac) = ISTATUS(Njac) + 1 + END IF + +#ifdef FULL_ALGEBRA + DO j=1,NVAR + DO i=1,NVAR + E(i,j) = -FJAC(i,j) + END DO + E(j,j) = E(j,j)+HGammaInv + END DO + CALL DGETRF( NVAR, NVAR, E, NVAR, IP, ISING ) +#else + DO i = 1,LU_NONZERO + E(i) = -FJAC(i) + END DO + DO i = 1,NVAR + j = LU_DIAG(i); E(j) = E(j) + HGammaInv + END DO + CALL KppDecomp ( E, ISING) + IP(1) = 1 +#endif + ISTATUS(Ndec) = ISTATUS(Ndec) + 1 + + IF (ISING /= 0) THEN + WRITE (6,*) ' MATRIX IS SINGULAR, ISING=',ISING,' T=',T,' H=',H + ISTATUS(Nsng) = ISTATUS(Nsng) + 1; ConsecutiveSng = ConsecutiveSng + 1 + IF (ConsecutiveSng >= 6) RETURN ! Failure + H = 0.5d0*H + SkipJac = .TRUE. + SkipLU = .FALSE. + Reject = .TRUE. + END IF + + END DO Hloop + + END SUBROUTINE SDIRK2_PrepareMatrix + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE SDIRK2_Solve ( H, N, E, IP, ISING, RHS ) +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +!~~~> Solves the system (H*Gamma-Jac)*x = RHS +! using the LU decomposition of E = I - 1/(H*Gamma)*Jac +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + IMPLICIT NONE + INTEGER, INTENT(IN) :: N, IP(N), ISING + KPP_REAL, INTENT(IN) :: H +#ifdef FULL_ALGEBRA + KPP_REAL, INTENT(IN) :: E(NVAR,NVAR) +#else + KPP_REAL, INTENT(IN) :: E(LU_NONZERO) +#endif + KPP_REAL, INTENT(INOUT) :: RHS(N) + KPP_REAL :: HGammaInv + + HGammaInv = ONE/(H*rkGamma) + CALL WSCAL(N,HGammaInv,RHS,1) +#ifdef FULL_ALGEBRA + CALL DGETRS( 'N', N, 1, E, N, IP, RHS, N, ISING ) +#else + CALL KppSolve(E, RHS) +#endif + ISTATUS(Nsol) = ISTATUS(Nsol) + 1 + + END SUBROUTINE SDIRK2_Solve + +!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +SUBROUTINE BEuler +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +sdMethod = BEL +! Number of stages +rkS = 1 + +! Method coefficients +rkGamma = 1.0_dp +rkA(1,1) = 1.0_dp +rkB(1) = 1.0_dp +rkBhat(1)= 1.0_dp +rkC(1) = 1.0_dp + +! Ynew = Yold + h*Sum_i {rkB_i*k_i} = Yold + Sum_i {rkD_i*Z_i} +rkD(1) = 1.0_dp + +! Err = h * Sum_i {(rkB_i-rkBhat_i)*k_i} = Sum_i {rkE_i*Z_i} +rkE(1) = 1.0_dp + +! Local order of Err estimate +rkElo = -1.0_dp + +! h*Sum_j {rkA_ij*k_j} = Sum_j {rkTheta_ij*Z_j} +rkTheta(1,1) = 0.0_dp + +! Starting value for Newton iterations: Z_i^0 = Sum_j {rkAlpha_ij*Z_j} +rkAlpha(1,1) = 0.0_dp + +END SUBROUTINE BEuler + + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE Sdirk4a +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + sdMethod = S4A +! Number of stages + rkS = 5 + +! Method coefficients + rkGamma = .2666666666666666666666666666666667d0 + + rkA(1,1) = .2666666666666666666666666666666667d0 + rkA(2,1) = .5000000000000000000000000000000000d0 + rkA(2,2) = .2666666666666666666666666666666667d0 + rkA(3,1) = .3541539528432732316227461858529820d0 + rkA(3,2) = -.5415395284327323162274618585298197d-1 + rkA(3,3) = .2666666666666666666666666666666667d0 + rkA(4,1) = .8515494131138652076337791881433756d-1 + rkA(4,2) = -.6484332287891555171683963466229754d-1 + rkA(4,3) = .7915325296404206392428857585141242d-1 + rkA(4,4) = .2666666666666666666666666666666667d0 + rkA(5,1) = 2.100115700566932777970612055999074d0 + rkA(5,2) = -.7677800284445976813343102185062276d0 + rkA(5,3) = 2.399816361080026398094746205273880d0 + rkA(5,4) = -2.998818699869028161397714709433394d0 + rkA(5,5) = .2666666666666666666666666666666667d0 + + rkB(1) = 2.100115700566932777970612055999074d0 + rkB(2) = -.7677800284445976813343102185062276d0 + rkB(3) = 2.399816361080026398094746205273880d0 + rkB(4) = -2.998818699869028161397714709433394d0 + rkB(5) = .2666666666666666666666666666666667d0 + + rkBhat(1)= 2.885264204387193942183851612883390d0 + rkBhat(2)= -.1458793482962771337341223443218041d0 + rkBhat(3)= 2.390008682465139866479830743628554d0 + rkBhat(4)= -4.129393538556056674929560012190140d0 + rkBhat(5)= 0.d0 + + rkC(1) = .2666666666666666666666666666666667d0 + rkC(2) = .7666666666666666666666666666666667d0 + rkC(3) = .5666666666666666666666666666666667d0 + rkC(4) = .3661315380631796996374935266701191d0 + rkC(5) = 1.d0 + +! Ynew = Yold + h*Sum_i {rkB_i*k_i} = Yold + Sum_i {rkD_i*Z_i} + rkD(1) = 0.d0 + rkD(2) = 0.d0 + rkD(3) = 0.d0 + rkD(4) = 0.d0 + rkD(5) = 1.d0 + +! Err = h * Sum_i {(rkB_i-rkBhat_i)*k_i} = Sum_i {rkE_i*Z_i} + rkE(1) = -.6804000050475287124787034884002302d0 + rkE(2) = 1.558961944525217193393931795738823d0 + rkE(3) = -13.55893003128907927748632408763868d0 + rkE(4) = 15.48522576958521253098585004571302d0 + rkE(5) = 1.d0 + +! Local order of Err estimate + rkElo = 4 + +! h*Sum_j {rkA_ij*k_j} = Sum_j {rkTheta_ij*Z_j} + rkTheta(2,1) = 1.875000000000000000000000000000000d0 + rkTheta(3,1) = 1.708847304091539528432732316227462d0 + rkTheta(3,2) = -.2030773231622746185852981969486824d0 + rkTheta(4,1) = .2680325578937783958847157206823118d0 + rkTheta(4,2) = -.1828840955527181631794050728644549d0 + rkTheta(4,3) = .2968246986151577397160821594427966d0 + rkTheta(5,1) = .9096171815241460655379433581446771d0 + rkTheta(5,2) = -3.108254967778352416114774430509465d0 + rkTheta(5,3) = 12.33727431701306195581826123274001d0 + rkTheta(5,4) = -11.24557012450885560524143016037523d0 + +! Starting value for Newton iterations: Z_i^0 = Sum_j {rkAlpha_ij*Z_j} + rkAlpha(2,1) = 2.875000000000000000000000000000000d0 + rkAlpha(3,1) = .8500000000000000000000000000000000d0 + rkAlpha(3,2) = .4434782608695652173913043478260870d0 + rkAlpha(4,1) = .7352046091658870564637910527807370d0 + rkAlpha(4,2) = -.9525565003057343527941920657462074d-1 + rkAlpha(4,3) = .4290111305453813852259481840631738d0 + rkAlpha(5,1) = -16.10898993405067684831655675112808d0 + rkAlpha(5,2) = 6.559571569643355712998131800797873d0 + rkAlpha(5,3) = -15.90772144271326504260996815012482d0 + rkAlpha(5,4) = 25.34908987169226073668861694892683d0 + +!~~~> Coefficients for continuous solution +! rkD(1,1)= 24.74416644927758d0 +! rkD(1,2)= -4.325375951824688d0 +! rkD(1,3)= 41.39683763286316d0 +! rkD(1,4)= -61.04144619901784d0 +! rkD(1,5)= -3.391332232917013d0 +! rkD(2,1)= -51.98245719616925d0 +! rkD(2,2)= 10.52501981094525d0 +! rkD(2,3)= -154.2067922191855d0 +! rkD(2,4)= 214.3082125319825d0 +! rkD(2,5)= 14.71166018088679d0 +! rkD(3,1)= 33.14347947522142d0 +! rkD(3,2)= -19.72986789558523d0 +! rkD(3,3)= 230.4878502285804d0 +! rkD(3,4)= -287.6629744338197d0 +! rkD(3,5)= -18.99932366302254d0 +! rkD(4,1)= -5.905188728329743d0 +! rkD(4,2)= 13.53022403646467d0 +! rkD(4,3)= -117.6778956422581d0 +! rkD(4,4)= 134.3962081008550d0 +! rkD(4,5)= 8.678995715052762d0 +! +! DO i=1,4 ! CONTi <-- Sum_j rkD(i,j)*Zj +! CALL Set2zero(N,CONT(1,i)) +! DO j = 1,rkS +! CALL WAXPY(N,rkD(i,j),Z(1,j),1,CONT(1,i),1) +! END DO +! END DO + + rkELO = 4.0d0 + + END SUBROUTINE Sdirk4a + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE Sdirk4b +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + sdMethod = S4B +! Number of stages + rkS = 5 + +! Method coefficients + rkGamma = .25d0 + + rkA(1,1) = 0.25d0 + rkA(2,1) = 0.5d00 + rkA(2,2) = 0.25d0 + rkA(3,1) = 0.34d0 + rkA(3,2) =-0.40d-1 + rkA(3,3) = 0.25d0 + rkA(4,1) = 0.2727941176470588235294117647058824d0 + rkA(4,2) =-0.5036764705882352941176470588235294d-1 + rkA(4,3) = 0.2757352941176470588235294117647059d-1 + rkA(4,4) = 0.25d0 + rkA(5,1) = 1.041666666666666666666666666666667d0 + rkA(5,2) =-1.020833333333333333333333333333333d0 + rkA(5,3) = 7.812500000000000000000000000000000d0 + rkA(5,4) =-7.083333333333333333333333333333333d0 + rkA(5,5) = 0.25d0 + + rkB(1) = 1.041666666666666666666666666666667d0 + rkB(2) = -1.020833333333333333333333333333333d0 + rkB(3) = 7.812500000000000000000000000000000d0 + rkB(4) = -7.083333333333333333333333333333333d0 + rkB(5) = 0.250000000000000000000000000000000d0 + + rkBhat(1)= 1.069791666666666666666666666666667d0 + rkBhat(2)= -0.894270833333333333333333333333333d0 + rkBhat(3)= 7.695312500000000000000000000000000d0 + rkBhat(4)= -7.083333333333333333333333333333333d0 + rkBhat(5)= 0.212500000000000000000000000000000d0 + + rkC(1) = 0.25d0 + rkC(2) = 0.75d0 + rkC(3) = 0.55d0 + rkC(4) = 0.50d0 + rkC(5) = 1.00d0 + +! Ynew = Yold + h*Sum_i {rkB_i*k_i} = Yold + Sum_i {rkD_i*Z_i} + rkD(1) = 0.0d0 + rkD(2) = 0.0d0 + rkD(3) = 0.0d0 + rkD(4) = 0.0d0 + rkD(5) = 1.0d0 + +! Err = h * Sum_i {(rkB_i-rkBhat_i)*k_i} = Sum_i {rkE_i*Z_i} + rkE(1) = 0.5750d0 + rkE(2) = 0.2125d0 + rkE(3) = -4.6875d0 + rkE(4) = 4.2500d0 + rkE(5) = 0.1500d0 + +! Local order of Err estimate + rkElo = 4 + +! h*Sum_j {rkA_ij*k_j} = Sum_j {rkTheta_ij*Z_j} + rkTheta(2,1) = 2.d0 + rkTheta(3,1) = 1.680000000000000000000000000000000d0 + rkTheta(3,2) = -.1600000000000000000000000000000000d0 + rkTheta(4,1) = 1.308823529411764705882352941176471d0 + rkTheta(4,2) = -.1838235294117647058823529411764706d0 + rkTheta(4,3) = 0.1102941176470588235294117647058824d0 + rkTheta(5,1) = -3.083333333333333333333333333333333d0 + rkTheta(5,2) = -4.291666666666666666666666666666667d0 + rkTheta(5,3) = 34.37500000000000000000000000000000d0 + rkTheta(5,4) = -28.33333333333333333333333333333333d0 + +! Starting value for Newton iterations: Z_i^0 = Sum_j {rkAlpha_ij*Z_j} + rkAlpha(2,1) = 3. + rkAlpha(3,1) = .8800000000000000000000000000000000d0 + rkAlpha(3,2) = .4400000000000000000000000000000000d0 + rkAlpha(4,1) = .1666666666666666666666666666666667d0 + rkAlpha(4,2) = -.8333333333333333333333333333333333d-1 + rkAlpha(4,3) = .9469696969696969696969696969696970d0 + rkAlpha(5,1) = -6.d0 + rkAlpha(5,2) = 9.d0 + rkAlpha(5,3) = -56.81818181818181818181818181818182d0 + rkAlpha(5,4) = 54.d0 + + END SUBROUTINE Sdirk4b + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE Sdirk2a +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + sdMethod = S2A +! Number of stages + rkS = 2 + +! Method coefficients + rkGamma = .2928932188134524755991556378951510d0 + + rkA(1,1) = .2928932188134524755991556378951510d0 + rkA(2,1) = .7071067811865475244008443621048490d0 + rkA(2,2) = .2928932188134524755991556378951510d0 + + rkB(1) = .7071067811865475244008443621048490d0 + rkB(2) = .2928932188134524755991556378951510d0 + + rkBhat(1)= .6666666666666666666666666666666667d0 + rkBhat(2)= .3333333333333333333333333333333333d0 + + rkC(1) = 0.292893218813452475599155637895151d0 + rkC(2) = 1.0d0 + +! Ynew = Yold + h*Sum_i {rkB_i*k_i} = Yold + Sum_i {rkD_i*Z_i} + rkD(1) = 0.0d0 + rkD(2) = 1.0d0 + +! Err = h * Sum_i {(rkB_i-rkBhat_i)*k_i} = Sum_i {rkE_i*Z_i} + rkE(1) = 0.4714045207910316829338962414032326d0 + rkE(2) = -0.1380711874576983496005629080698993d0 + +! Local order of Err estimate + rkElo = 2 + +! h*Sum_j {rkA_ij*k_j} = Sum_j {rkTheta_ij*Z_j} + rkTheta(2,1) = 2.414213562373095048801688724209698d0 + +! Starting value for Newton iterations: Z_i^0 = Sum_j {rkAlpha_ij*Z_j} + rkAlpha(2,1) = 3.414213562373095048801688724209698d0 + + END SUBROUTINE Sdirk2a + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE Sdirk2b +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + sdMethod = S2B +! Number of stages + rkS = 2 + +! Method coefficients + rkGamma = 1.707106781186547524400844362104849d0 + + rkA(1,1) = 1.707106781186547524400844362104849d0 + rkA(2,1) = -.707106781186547524400844362104849d0 + rkA(2,2) = 1.707106781186547524400844362104849d0 + + rkB(1) = -.707106781186547524400844362104849d0 + rkB(2) = 1.707106781186547524400844362104849d0 + + rkBhat(1)= .6666666666666666666666666666666667d0 + rkBhat(2)= .3333333333333333333333333333333333d0 + + rkC(1) = 1.707106781186547524400844362104849d0 + rkC(2) = 1.0d0 + +! Ynew = Yold + h*Sum_i {rkB_i*k_i} = Yold + Sum_i {rkD_i*Z_i} + rkD(1) = 0.0d0 + rkD(2) = 1.0d0 + +! Err = h * Sum_i {(rkB_i-rkBhat_i)*k_i} = Sum_i {rkE_i*Z_i} + rkE(1) = -.4714045207910316829338962414032326d0 + rkE(2) = .8047378541243650162672295747365659d0 + +! Local order of Err estimate + rkElo = 2 + +! h*Sum_j {rkA_ij*k_j} = Sum_j {rkTheta_ij*Z_j} + rkTheta(2,1) = -.414213562373095048801688724209698d0 + +! Starting value for Newton iterations: Z_i^0 = Sum_j {rkAlpha_ij*Z_j} + rkAlpha(2,1) = .5857864376269049511983112757903019d0 + + END SUBROUTINE Sdirk2b + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE Sdirk3a +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + sdMethod = S3A +! Number of stages + rkS = 3 + +! Method coefficients + rkGamma = .2113248654051871177454256097490213d0 + + rkA(1,1) = .2113248654051871177454256097490213d0 + rkA(2,1) = .2113248654051871177454256097490213d0 + rkA(2,2) = .2113248654051871177454256097490213d0 + rkA(3,1) = .2113248654051871177454256097490213d0 + rkA(3,2) = .5773502691896257645091487805019573d0 + rkA(3,3) = .2113248654051871177454256097490213d0 + + rkB(1) = .2113248654051871177454256097490213d0 + rkB(2) = .5773502691896257645091487805019573d0 + rkB(3) = .2113248654051871177454256097490213d0 + + rkBhat(1)= .2113248654051871177454256097490213d0 + rkBhat(2)= .6477918909913548037576239837516312d0 + rkBhat(3)= .1408832436034580784969504064993475d0 + + rkC(1) = .2113248654051871177454256097490213d0 + rkC(2) = .4226497308103742354908512194980427d0 + rkC(3) = 1.d0 + +! Ynew = Yold + h*Sum_i {rkB_i*k_i} = Yold + Sum_i {rkD_i*Z_i} + rkD(1) = 0.d0 + rkD(2) = 0.d0 + rkD(3) = 1.d0 + +! Err = h * Sum_i {(rkB_i-rkBhat_i)*k_i} = Sum_i {rkE_i*Z_i} + rkE(1) = 0.9106836025229590978424821138352906d0 + rkE(2) = -1.244016935856292431175815447168624d0 + rkE(3) = 0.3333333333333333333333333333333333d0 + +! Local order of Err estimate + rkElo = 2 + +! h*Sum_j {rkA_ij*k_j} = Sum_j {rkTheta_ij*Z_j} + rkTheta(2,1) = 1.0d0 + rkTheta(3,1) = -1.732050807568877293527446341505872d0 + rkTheta(3,2) = 2.732050807568877293527446341505872d0 + +! Starting value for Newton iterations: Z_i^0 = Sum_j {rkAlpha_ij*Z_j} + rkAlpha(2,1) = 2.0d0 + rkAlpha(3,1) = -12.92820323027550917410978536602349d0 + rkAlpha(3,2) = 8.83012701892219323381861585376468d0 + + END SUBROUTINE Sdirk3a + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE SDIRK3 +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + !sdMethod = S2B +! Number of stages + rkS = 2 + +! Method coefficients + rkGamma = 0.788675134594812882254574390250978d0 + + rkA(1,1) = 0.788675134594812882254574390250978d0 + rkA(2,1) = -.577350269189625764509148780501957d0 + rkA(2,2) = 0.788675134594812882254574390250978d0 + + rkB(1) = 0.5d0 + rkB(2) = 0.5d0 + + !rkBhat(1)= .6666666666666666666666666666666667d0 + !rkBhat(2)= .3333333333333333333333333333333333d0 + + rkC(1) = 0.788675134594812882254574390250978d0 + rkC(2) = 0.211324865405187117745425609749022d0 + +! Ynew = Yold + h*Sum_i {rkB_i*k_i} = Yold + Sum_i {rkD_i*Z_i} + !rkD(1) = 0.0d0 + !rkD(2) = 1.0d0 + +! Err = h * Sum_i {(rkB_i-rkBhat_i)*k_i} = Sum_i {rkE_i*Z_i} + !rkE(1) = -.4714045207910316829338962414032326d0 + !rkE(2) = .8047378541243650162672295747365659d0 + +! Local order of Err estimate + !rkElo = 2 + +! h*Sum_j {rkA_ij*k_j} = Sum_j {rkTheta_ij*Z_j} + !rkTheta(2,1) = -.414213562373095048801688724209698d0 + +! Starting value for Newton iterations: Z_i^0 = Sum_j {rkAlpha_ij*Z_j} + !rkAlpha(2,1) = .5857864376269049511983112757903019d0 + + END SUBROUTINE SDIRK3 + + + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + END SUBROUTINE SDIRK ! AND ALL ITS INTERNAL PROCEDURES +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE FUN_CHEM( T, Y, P ) +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + USE KPP_ROOT_Parameters, ONLY: NVAR, LU_NONZERO + USE KPP_ROOT_Global, ONLY: FIX, RCONST, TIME + USE KPP_ROOT_Function, ONLY: Fun + USE KPP_ROOT_Rates, ONLY: Update_SUN, Update_RCONST, Update_PHOTO + IMPLICIT NONE + + KPP_REAL :: T, Told + KPP_REAL :: Y(NVAR), P(NVAR) + + Told = TIME + TIME = T + !CALL Update_SUN() + !CALL Update_RCONST() + + CALL Fun( Y, FIX, RCONST, P ) + + TIME = Told + + END SUBROUTINE FUN_CHEM + + +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + SUBROUTINE JAC_CHEM( T, Y, JV ) +!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + USE KPP_ROOT_Parameters, ONLY: NVAR, LU_NONZERO + USE KPP_ROOT_Global, ONLY: FIX, RCONST, TIME + USE KPP_ROOT_Jacobian + USE KPP_ROOT_Jacobian, ONLY: Jac_SP + USE KPP_ROOT_Rates, ONLY: Update_SUN, Update_RCONST, Update_PHOTO + IMPLICIT NONE + + KPP_REAL :: T, Told + KPP_REAL :: Y(NVAR) +#ifdef FULL_ALGEBRA + KPP_REAL :: JS(LU_NONZERO), JV(NVAR,NVAR) + INTEGER :: i, j +#else + KPP_REAL :: JV(LU_NONZERO) +#endif + + Told = TIME + TIME = T + !CALL Update_SUN() + !CALL Update_RCONST() + +#ifdef FULL_ALGEBRA + CALL Jac_SP(Y, FIX, RCONST, JS) + DO j=1,NVAR + DO i=1,NVAR + JV(i,j) = 0.0D0 + END DO + END DO + DO i=1,LU_NONZERO + JV(LU_IROW(i),LU_ICOL(i)) = JS(i) + END DO +#else + CALL Jac_SP(Y, FIX, RCONST, JV) +#endif + TIME = Told + + END SUBROUTINE JAC_CHEM + +END MODULE KPP_ROOT_Integrator +