-
Notifications
You must be signed in to change notification settings - Fork 2
/
fullchem_RateLawFuncs.F90
3460 lines (3273 loc) · 132 KB
/
fullchem_RateLawFuncs.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!------------------------------------------------------------------------------
! GEOS-Chem Global Chemical Transport Model !
!------------------------------------------------------------------------------
!BOP
!
! !IROUTINE: fullchem_RateLawFuncs
!
! !DESCRIPTION: Provides rate-law functions used by the "fullchem" chemical
! mechanism. This will be referenced from within subroutine Update_RCONST.
!\\
!\\
! !INTERFACE:
!
MODULE fullchem_RateLawFuncs
!
! !USES:
!
USE gckpp_Global
USE gckpp_Parameters
USE gckpp_Precision
USE rateLawUtilFuncs
IMPLICIT NONE
PUBLIC
!
! !DEFINED PARAMETERS:
!
! Indices for aerosol type (1 .. NAEROTYPE=14)
INTEGER, PRIVATE, PARAMETER :: DU1 = 1 ! Dust (Reff = 0.151 um)
INTEGER, PRIVATE, PARAMETER :: DU2 = 2 ! Dust (Reff = 0.253 um)
INTEGER, PRIVATE, PARAMETER :: DU3 = 3 ! Dust (Reff = 0.402 um)
INTEGER, PRIVATE, PARAMETER :: DU4 = 4 ! Dust (Reff = 0.818 um)
INTEGER, PRIVATE, PARAMETER :: DU5 = 5 ! Dust (Reff = 1.491 um)
INTEGER, PRIVATE, PARAMETER :: DU6 = 6 ! Dust (Reff = 2.417 um)
INTEGER, PRIVATE, PARAMETER :: DU7 = 7 ! Dust (Reff = 3.721 um)
INTEGER, PRIVATE, PARAMETER :: SUL = 8 ! Tropospheric Sulfate
INTEGER, PRIVATE, PARAMETER :: BKC = 9 ! Black Carbon
INTEGER, PRIVATE, PARAMETER :: ORC = 10 ! Organic Carbon
INTEGER, PRIVATE, PARAMETER :: SSA = 11 ! Accum-mode sea salt
INTEGER, PRIVATE, PARAMETER :: SSC = 12 ! Coarse-mode sea salt
INTEGER, PRIVATE, PARAMETER :: SLA = 13 ! Strat sulfate liq aer
INTEGER, PRIVATE, PARAMETER :: IIC = 14 ! Irregular ice cloud
! Indices for Fine and Coarse sea-salt indices
INTEGER, PRIVATE, PARAMETER :: SS_FINE = 1
INTEGER, PRIVATE, PARAMETER :: SS_COARSE = 2
! Indices for the KHETI_SLA array
INTEGER, PRIVATE, PARAMETER :: N2O5_plus_H2O = 1
INTEGER, PRIVATE, PARAMETER :: N2O5_plus_HCl = 2 ! KHETI_SLA(2) = 0
INTEGER, PRIVATE, PARAMETER :: ClNO3_plus_H2O = 3
INTEGER, PRIVATE, PARAMETER :: ClNO3_plus_HCl = 4
INTEGER, PRIVATE, PARAMETER :: ClNO3_plus_HBr = 5
INTEGER, PRIVATE, PARAMETER :: BrNO3_plus_H2O = 6
INTEGER, PRIVATE, PARAMETER :: BrNO3_plus_HCl = 7
INTEGER, PRIVATE, PARAMETER :: HOCl_plus_HCl = 8
INTEGER, PRIVATE, PARAMETER :: HOCl_plus_HBr = 9 ! KHETI_SLA(9) = 0
INTEGER, PRIVATE, PARAMETER :: HOBr_plus_HCl = 10
INTEGER, PRIVATE, PARAMETER :: HOBr_plus_HBr = 11 ! KHETI_SLA(11)= 0
! Critical RH [%] for uptake of GLYX, MGLYX, and GLYC:
REAL(dp), PRIVATE, PARAMETER :: CRITRH = 35.0_dp
! Conversion factor from atm to bar
REAL(dp), PRIVATE, PARAMETER :: CON_ATM_BAR = 1.0_dp / 1.01325_dp
! Reference temperature used in Henry's law
REAL(dp), PRIVATE, PARAMETER :: INV_T298 = 1.0_dp / 298.15_dp
!
! !REFERENCES:
! Eastham et al., Development and evaluation of the unified tropospheric-
! stratospheric chemistry extension (UCX) for the global chemistry-transport
! model GEOS-Chem, Atmos. Env., doi:10.1016/j.atmosenv.2014.02.001, 2014.
! Fisher et al, Organic nitrate chemistry and its implications for nitrogen
! budgets in an isoprene- and monoterpene-rich atmosphere: constraints from
! aircraft (SEAC4RS) and ground-based (SOAS) observations in the Southeast
! US. Atmos. Chem. Phys., 16, 2961-1.02990, 2016.
! Holmes, C.D., Bertram, T. H., Confer, K. L., Ronan, A. C., Wirks, C. K.,
! Graham, K. A., Shah, V. (2019) The role of clouds in the tropospheric
! NOx cycle: a new modeling approach for cloud chemistry and its global
! implications, Geophys. Res. Lett. 46, 4980-4990,
! https://doi.org/10.1029/2019GL081990
! Marais et al., Aqueous-phase mechanism for secondary organic aerosol
! formation from isoprene: application to the southeast United States and
! co-benefit of SO2 emission controls, Atmos. Chem. Phys., 16, 1603-1618,
! doi:10.5194/acp-16-1603-2016, 2016.
! Parrella et al, Tropospheric bromine chemistry: implications for present and
! pre-industrial ozone and mercury, Atmos. Chem. Phys., 12, 6,723-6,740,
! doi:10.5194/acp-12-6723-2012, 2012.
! Schmidt, J., et al., “Modelling the observed tropospheric BrO background:
! Importance of multiphase chemistry & implications for ozone, OH, &
! mercury”, J Geophys. Res-Atmos., 121, 024229,
! https://doi.org/10.1002/2015JD024229, 2016.
! Sherwen, T., et al., Global impacts of tropospheric halogens (Cl, Br, I) on
! oxidants and composition in GEOS-Chem, Atmos. Chem. Phys., 16, 12239-12271,
! https://doi.org/10.5194/acp-16-12239-2016, 2016.
!EOP
!------------------------------------------------------------------------------
!BOC
CONTAINS
!#########################################################################
!##### RATE-LAW FUNCTIONS FOR GAS-PHASE REACTIONS #####
!##### Some common functions are defined in rateLawUtilFuncs.F90 #####
!#########################################################################
FUNCTION ARRPLUS_ade( a0, d0, e0 ) RESULT( k )
! Modified Arrhenius law, skipping computation of EXP( -b0/T )
! and ( 300/T )**c0 terms, which evaluate to 1 when b0 = c0 = 0.
! This avoids excess CPU cycles. (bmy, 12/18/20)
!
! Used to compute the rate for these reactions:
! IHOO1 + IHOO1 = 2MVK + 2HO2 + 2CH2O
! IHOO4 + IHOO4 = 2MACR + 2HO2 + 2CH2O
! IHOO1 + IHOO4 = MACR + MVK + 2HO2 + 2CH2O
! IHOO1 + IHOO1 = HO2 + HC5A + CO + OH + MVKHP
! IHOO4 + IHOO4 = HO2 + HC5A + CO + OH + MCRHP
! IHOO1 + IHOO4 = HO2 + HC5A + CO + OH + 0.5MVKHP + 0.5MCRHP
! IHOO1 + MO2 = MVK + 2HO2 + 2CH2O :
! IHOO1 + MO2 = CH2O + 0.5HC5A + 1.5HO2 + 0.5MVKHP + 0.5CO + 0.5OH
! IHOO4 + MO2 = MACR + 2HO2 + 2CH2O
! IHOO4 + MO2 = CH2O + 0.5HC5A + 1.5HO2 + 0.5MCRHP + 0.5CO + 0.5OH
!
REAL(dp), INTENT(IN) :: a0, d0, e0
REAL(dp) :: k
!
k = a0 * ( d0 + ( TEMP * e0 ) )
k = MAX( k, 0.0_dp )
END FUNCTION ARRPLUS_ade
FUNCTION ARRPLUS_abde( a0, b0, d0, e0 ) RESULT( k )
! Modified Arrhenius law, skipping computation of ( T/300 )**c0,
! which evaluates to 1 when c0=0. This avoids excess CPU cycles.
! (bmy, 12/18/20)
!
! Used to compute the rate for these reactions:
! IHOO1 + HO2 = 0.063MVK + 0.063OH + 0.063HO2 + 0.063CH2O + 0.937RIPA
! IHOO1 + HO2 = RIPC
! IHOO4 + HO2 = 0.063MACR + 0.063OH + 0.063HO2 + 0.063CH2O + 0.937RIPB
! IHOO4 + HO2 = RIPD
! IHOO1 = CH2O + OH + MVK
! IHOO4 = MACR + OH + CH2O
!
REAL(dp), INTENT(IN) :: a0, b0, d0, e0
REAL(dp) :: k
!
k = a0 * ( d0 + ( TEMP * e0 ) ) * EXP( -b0 / TEMP )
k = MAX( k, 0.0_dp )
END FUNCTION ARRPLUS_abde
FUNCTION TUNPLUS_abcde( a0, b0, c0, d0, e0 ) RESULT( k )
! Used to compute the rate for these reactions:
! IHOO1 = 1.5OH + ...
! IHOO4 = 1.5OH + ...
!
REAL(dp), INTENT(IN) :: a0, b0, c0, d0, e0
REAL(dp) :: k
!
k = a0 * ( d0 + ( TEMP * e0 ) )
k = k * EXP( b0 / TEMP ) * EXP( c0 / TEMP**3 )
k = MAX( k, 0.0_dp )
END FUNCTION TUNPLUS_abcde
FUNCTION GC_ISO1( a0, b0, c0, d0, e0, f0, g0 ) RESULT( k )
! Used to compute the rate for these reactions:
! ISOP + OH = LISOPOH + IHOO1
! ISOP + OH = LISOPOH + IHOO4
!
REAL(dp), INTENT(IN) :: a0, b0, c0, d0, e0, f0, g0
REAL(dp) :: k0, k1, k2, k
!
k0 = d0 * EXP( e0 / TEMP ) * EXP( 1.0E8_dp / TEMP**3 )
k1 = f0 * EXP( g0 / TEMP )
k2 = c0 * k0 / ( k0 + k1 )
k = a0 * EXP( b0 / TEMP ) * ( 1.0_dp - k2 )
END FUNCTION GC_ISO1
FUNCTION GC_ISO2( a0, b0, c0, d0, e0, f0, g0 ) RESULT( k )
! Used to compute the rate for these reactions:
! ISOP + OH = 0.3MCO3 + 0.3MGLY + 0.3CH2O
! + 0.15HPALD3 + 0.25HPALD1 + 0.4HO2
! + 0.6CO + 1.5OH + 0.3HPETHNL + LISOPOH
! ISOP + OH = 0.3CH2O + 0.15HPALD4 + 0.25HPALD2
! + 1.5OH + 0.9CO + 0.7HO2 + 0.3MGLY
! + 0.3ATOOH + LISOPOH
!
REAL(dp), INTENT(IN) :: a0, b0, c0, d0, e0, f0, g0
REAL(dp) :: k0, k1, k2, k
!
k0 = d0 * EXP( e0 / TEMP ) * EXP( 1.0E8_dp / TEMP**3 )
k1 = f0 * EXP( g0 / TEMP )
k2 = c0 * k0 / ( k0 + k1 )
k = a0 * EXP( b0 / TEMP ) * k2
END FUNCTION GC_ISO2
FUNCTION GC_EPO_a( a1, e1, m1 ) RESULT( k )
! Used to compute the rate for these reactions:
! RIPA + OH = 0.67IEPOXA + 0.33IEPOXB + OH + 0.005LVOC
! RIPB + OH = 0.68IEPOXA + 0.321IEPOB + OH + 0.005LVOC
! IEPOXA + OH = 0.67IEPOXA00 + 0.33IEPOXB00
! IEPOXB + OH = 0.81IEPOXA00 + 0.19IEPOXB00
! IHN2 + OH = 0.67IEPOXA + 0.33IEPOXB + NO2
! IHN3 + OH = 0.67IEPOXA + 0.33IEPOXB + NO2
! IHN1 + OH = IEPOXD + NO2
! IHN4 + OH = IEPOXD + NO2
! INPB + OH = OH + ITHN
! INPD + OH = OH + ITHN
! INPD + OH = NO2 + ICHE
! ICN + OH = NO2 + ICHE
!
REAL(dp), INTENT(IN) :: a1, e1, m1
REAL(dp) :: k1, k
!
k1 = 1.0_dp / ( m1 * NUMDEN + 1.0_dp )
k = a1 * EXP( e1 / TEMP ) * K1
END FUNCTION GC_EPO_a
FUNCTION GC_PAN_abab( a0, b0, a1, b1, cf ) RESULT( k )
! Used to compute the rate for these reactions:
! MACR1OO + NO2 = MPAN
! MACRNO2 + NO2 = MPAN + NO2
!
! For these reactions, these Arrhenius law terms evaluate to 1:
! EXP(b0/T)
! EXP(b1/T)
! because b0 = b1 = 0. Therefore we can skip computing these
! terms. This avoids excess CPU cycles. (bmy, 12/18/20)
!
! Sept 27 2012: Added GC_PAN_abab per Kelvin Bates' requirements
! for aromatic chem.
REAL(dp), INTENT(IN) :: a0, b0, a1, b1, cf
REAL(dp) :: k0, k1, kr, nc, f, k
!
k0 = a0 * EXP( b0 / TEMP )
k1 = a1 * EXP( b1 / TEMP )
k0 = k0 * NUMDEN
kr = k0 / k1
nc = 0.75_dp - 1.27_dp * ( LOG10( cf ) )
f = 10.0_dp**( LOG10( cf ) / ( 1.0_dp + ( LOG10( kr ) / nc )**2 ) )
k = k0 * k1 * f / ( k0 + k1 )
END FUNCTION GC_PAN_abab
FUNCTION GC_PAN_acac( a0, c0, a1, c1, cf ) RESULT( k )
! Used to compute the rate for these reactions:
! MACR1OO + NO2 = MPAN
! MACRNO2 + NO2 = MPAN + NO2
!
! For these reactions, these Arrhenius law terms evaluate to 1:
! EXP(b0/T)
! EXP(b1/T)
! because b0 = b1 = 0. Therefore we can skip computing these
! terms. This avoids excess CPU cycles. (bmy, 12/18/20)
!
REAL(dp), INTENT(IN) :: a0, c0, a1, c1, cf
REAL(dp) :: k0, k1, kr, nc, f, k
!
k0 = a0 * TEMP_OVER_K300**c0
k1 = a1 * TEMP_OVER_K300**c1
k0 = k0 * NUMDEN
kr = k0 / k1
nc = 0.75_dp - 1.27_dp * ( LOG10( cf ) )
f = 10.0_dp**( LOG10( cf ) / ( 1.0_dp + ( LOG10( kr ) / nc )**2 ) )
k = k0 * k1 * f / ( k0 + k1 )
END FUNCTION GC_PAN_acac
FUNCTION GC_NIT( a0, b0, c0, n, x0, y0 ) RESULT( k )
! Used to compute the rate for these reactions:
! IHOO1 + NO = IHN2
! IHOO4 + NO = IHN4
! IHPOO1 + NO = IHTN
! IHPOO2 + NO = IHTN
! IHPOO2 + NO = IHTN
! IEPOXAOO + NO = IHTN
! IEPOXBOO + NO = IHTN
! IHCOO + NO = IHTN
! ISOPNOO1 + NO = IDN
! ISOPNOO2 + NO = IDN
! IDHNDOO1 + NO = IDN
! IDHNDOO2 + NO = IDN
! INO2B + NO = IDN
! INO2D + NO = IDN
! IHPNBOO + NO = IDN
! IHPNDOO + NO = IDN
! MVK0HOO + NO = 0.438MVKN
! MCROHOO + NO = MCRHN
!
REAL(dp), INTENT(IN) :: a0, b0, c0, n, x0, y0
REAL(dp) :: k0, k1, k2, k3, k4, k
!
k0 = 2.0E-22_dp * EXP( n )
k1 = 4.3E-1_dp * ( TEMP / 298.0_dp )**(-8)
k0 = k0 * NUMDEN
k1 = k0 / k1
k2 = ( k0 / ( 1.0_dp + k1 ) ) &
* 4.1E-1_dp**( 1.0_dp / ( 1.0_dp + ( LOG10(k1) )**2) )
k3 = k2 / ( k2 + c0 )
k4 = A0 * ( x0 - TEMP*y0 )
k = k4 * EXP( b0 / TEMP ) * k3
k = MAX( k, 0.0_dp )
END FUNCTION GC_NIT
FUNCTION GC_ALK( a0, b0, c0, n, x0, y0 ) RESULT( k )
! Used to compute the rate for these reactions:
! IHOO1 + NO = NO2 + ...
! IHOO4 + NO = NO2 + ...
! IHP001 + NO = NO2 + ...
! IHP002 + NO = NO2 + ...
! IHP003 + NO = NO2 + ...
! IEPOXAOO + NO = NO2 + ...
! IEPOXBOO + NO = NO2 + ...
! ICHOO + NO = NO2 + ...
! ISOPNOO1 + NO = 1.728NO2 + ...
! ISOPNOO2 + NO = NO2 + ...
! IDHNDOO1 + NO = NO2 + ...
! IDHNDOO2 + NO = NO2 + ...
! IDHNBOO + NO = NO2 + ...
! IDHNDOO + NO = NO2 + ...
! INO2B + NO = 2.000NO2 + ...
! INO2D + NO = NO2 + ...
! IHPNBOO + NO = 1.065NO2 + ...
! IHPNDOO + NO = NO2 + ...
! MVKOHOO + NO = NO2 + ...
! MCROHOO + NO = NO2 + ...
!
REAL(dp), INTENT(IN) :: a0, b0, c0, n, x0, y0
REAL(dp) :: k0, k1, k2, k3, k4, k
!
k0 = 2.0E-22_dp * EXP( n )
k1 = 4.3E-1_dp * ( TEMP / 298.0_dp)**(-8)
k0 = k0 * NUMDEN
k1 = k0 / k1
k2 = ( K0 / ( 1.0_dp +K1 ) ) &
* 4.1E-1_dp**( 1.0_dp / ( 1.0_dp + ( LOG10( k1 ) )**2) )
k3 = c0/ ( k2 + c0 )
k4 = a0 * ( x0 - TEMP*y0 )
k = k4 * EXP( b0 / TEMP ) * k3
k = MAX( k, 0.0_dp )
END FUNCTION GC_ALK
FUNCTION GC_HO2HO2_acac( a0, c0, a1, c1 ) RESULT( k )
! Used to compute the rate for these reactions:
! HO2 + HO2 = H2O2 + O2
!
! For this reaction, these Arrhenius law terms evaluate to 1:
! (300/T)**b0
! (300/T)**b1
! because b0 = b1 = 0. Therefore we can skip computing these
! terms. This avoids excess CPU cycles. (bmy, 12/18/20)
!
REAL(dp), INTENT(IN) :: a0, c0, a1, c1
REAL(dp) :: k0, k1, k
!
k0 = a0 * EXP( c0 / TEMP )
k1 = a1 * EXP( c1 / TEMP )
k = ( k0 + k1 * NUMDEN ) &
* ( 1.0_dp + 1.4E-21_dp * H2O * EXP( 2200.0_dp / TEMP ) )
END FUNCTION GC_HO2HO2_acac
FUNCTION GC_TBRANCH_1_acac( a0, c0, a1, c1 ) RESULT( k )
! Temperature Dependent Branching Ratio, used for reactions:
! MO2 + MO2 = CH2O + MOH + O2
! MO2 + MO2 = 2CH2O + 2HO2
!
! For these reactions, these Arrhenius law terms evaluate to 1:
! (300/T)**b0
! (300/T)**b1
! because b0 = b1 = 0. Therefore we can skip computing these
! terms. This avoids excess CPU cycles. (bmy, 12/18/20)
!
REAL(dp), INTENT(IN) :: a0, c0, a1, c1
REAL(dp) :: k0, k1, k
!
k0 = a0 * EXP( c0 / TEMP )
k1 = a1 * EXP( c1 / TEMP )
k = k0 / ( 1.0_dp + k1 )
END FUNCTION GC_TBRANCH_1_acac
FUNCTION GC_RO2HO2_aca( a0, c0, a1 ) RESULT( k )
! Carbon Dependence of RO2+HO2, used in these reactions:
! A3O2 + HO2 = RA3P
! PO2 + HO2 = PP
! KO2 + HO2 = 0.150OH + 0.150ALD2 + 0.150MCO3 + 0.850ATOOH
! B3O2 + HO2 = RB3P
! PRN1 + HO2 = PRPN
!
! For these reactions, these Arrhenius law terms evaluate to 1:
! (300/T)**b0
! (300/T)**b1 * EXP(c1/T)
! Because b0 = b1 = c1 = 0. Therefore we can skip computing these
! terms. This avoids excess CPU cycles. (bmy, 12/18/20)
!
REAL(dp), INTENT(IN) :: a0, c0, a1
REAL(dp) :: k
!
k = a0 * EXP( c0 / TEMP )
k = k * ( 1.0_dp - EXP( -0.245_dp * a1 ) )
END FUNCTION GC_RO2HO2_aca
FUNCTION GC_DMSOH_acac( a0, c0, a1, c1 ) RESULT( k )
! Reaction rate for:
! DMS + OH = 0.750SO2 + 0.250MSA + MO2
!
! For this reaction, these Arrhenius law terms evaluate to 1:
! (300/T)**b0
! (300/T)**b1
! Because b0 = b1 = 0. Therefore we can skip computing these
! terms. This avoids excess CPU cycles. (bmy, 12/18/20)
!
REAL(dp), INTENT(IN) :: a0, c0, a1, c1
REAL(dp) :: k0, k1, k
!
k0 = a0 * EXP( c0 / TEMP )
k1 = a1 * EXP( c1 / TEMP )
k = ( k0 * NUMDEN * 0.2095e0_dp ) / ( 1.0_dp + k1 * 0.2095e0_dp )
END FUNCTION GC_DMSOH_acac
FUNCTION GC_GLYXNO3_ac( a0, c0 ) RESULT( k )
! Reaction rate for:
! GLYX + NO3 = HNO3 + HO2 + 2CO
! i.e. the HO2 + 2*CO branch
!
! For this reaction, this Arrhenius term evaluates to 1:
! (300/T)**b0
! because b0 = 0. Therefore we can skip computing this
! term. This avoids excess CPU cycles. (bmy, 12/18/20)
!
REAL(dp), INTENT(IN) :: a0, c0
REAL(dp) :: O2, k
!
! --- K = K1*([O2]+3.5D18)/(2*[O2]+3.5D18)
O2 = NUMDEN * 0.2095_dp
k = a0 * EXP( c0 / TEMP )
k = k * ( O2 + 3.5E+18_dp ) / ( 2.0_dp * O2 + 3.5E+18_dp )
END FUNCTION GC_GLYXNO3_ac
FUNCTION GC_GLYCOH_A_a( a0 ) RESULT( k )
! Used to compute the rate for this reaction:
! GLYC + OH = 0.732CH2O + 0.361CO2 + 0.505CO + 0.227OH
! + 0.773HO2 + 0.134GLYX + 0.134HCOOH
! which is the "A" branch of GLYC + OH.
!
! For this reaction, these Arrhenius law terms evaluate to 1:
! (300/T)**b0 * EXP(c0/T)
! Because b0 = c0 = 0. Therefore we can skip computing these
! terms. This avoids excess CPU cycles. (bmy, 12/18/20)
!
REAL(dp), INTENT(IN) :: a0
REAL(dp) :: glyc_frac, k
REAL(dp), PARAMETER :: exp_arg = -1.0_dp / 73.0_dp
!
glyc_frac = 1.0_dp - 11.0729_dp * EXP( exp_arg * TEMP )
glyc_frac = MAX( glyc_frac, 0.0_dp )
k = a0 * glyc_frac
END FUNCTION GC_GLYCOH_A_a
FUNCTION GC_GLYCOH_B_a( a0 ) RESULT( k )
! Used to compute the rate for this reaction:
! GLYC + OH = HCOOH + OH + CO
! which is the "B" branch of GLYC + OH.
!
! For this reaction, these Arrhenius law terms evaluate to 1:
! (300/T)**b0 * EXP(c0/T)
! Because b0 = c0 = 0. Therefore we can skip computing these
! terms. This avoids excess CPU cycles. (bmy, 12/18/20)
!
REAL(dp), INTENT(IN) :: a0
REAL(dp) :: glyc_frac, k
REAL(dp), PARAMETER :: exp_arg = -1.0_dp / 73.0_dp
!
glyc_frac = 1.0_dp - 11.0729_dp * EXP( exp_arg * TEMP )
glyc_frac = MAX( glyc_frac, 0.0_dp )
k = a0 * ( 1.0_dp - glyc_frac )
END FUNCTION GC_GLYCOH_B_a
FUNCTION GC_HACOH_A_ac( a0, c0 ) RESULT( k )
! Used to compute the rate for this reaction:
! HAC + OH = MGLY + HO2
! which is the "A" branch of HAC + OH.
!
! For this reaction, this Arrhenius law term evaluates to 1:
! (300/T)**b0
! because b0 = 0. Therefore we can skip computing this
! term. This avoids excess CPU cycles. (bmy, 12/18/20)
!
REAL(dp), INTENT(IN) :: a0, c0
REAL(dp) :: k0, hac_frac, k
REAL(dp), PARAMETER :: exp_arg = -1.0_dp / 60.0_dp
!
k0 = a0 * EXP( c0 / TEMP )
hac_frac = 1.0_dp - 23.7_dp * EXP( exp_arg * TEMP )
hac_frac = MAX( hac_frac, 0.0_dp )
k = k0 * hac_frac
END FUNCTION GC_HACOH_A_ac
FUNCTION GC_HACOH_B_ac( a0, c0 ) RESULT( k )
! Used to compute the rate for this reaction:
! HAC + OH = 0.5HCOOH + OH + 0.5ACTA + 0.5CO2 + 0.5CO + 0.5MO2
! which is the "B" branch of HAC + OH.
!
! For this reaction, this Arrhenius law term evaluates to 1:
! (300/T)**b0}
! because b0 = 0. Therefore we can skip computing this
! term. This avoids excess CPU cycles. (bmy, 12/18/20)
!
REAL(dp), INTENT(IN) :: a0, c0
REAL(dp) :: k0, hac_frac, k
REAL(dp), PARAMETER :: exp_arg = -1.0_dp / 60.0_dp
!
k0 = a0 * EXP( c0 / TEMP )
hac_frac = 1.0_dp - 23.7_dp * EXP( exp_arg * TEMP )
hac_frac = MAX( hac_frac, 0.0_dp )
k = k0 * ( 1.0_dp - hac_frac )
END FUNCTION GC_HACOH_B_ac
FUNCTION GC_RO2NO_A1_ac( a0, c0 ) RESULT( k )
! Reaction rate for the "A" branch of these RO2 + NO reactions:
! MO2 + NO = MENO3
! in which the "a1" parameter equals exactly 1.
!
! For these reactions, these Arrhenius law terms evaluate to 1:
! (300/T)**b0
! (300/T)**b1 * EXP(c1/T)
! because b0 = b1 = c1 = 0. Therefore we can skip computing
! these terms. This avoids excess CPU cycles. (bmy, 1/4/20)
!
! Special treatment for methyl nitrate based on observations
! as Carter and Atkinson formulation does not apply to C1.
! Value based on upper limit of Flocke et al. 1998 as applied
! in Fisher et al. 2018
!
REAL(dp), INTENT(IN) :: a0, c0
REAL(dp) :: k
!
k = a0 * EXP( c0 / TEMP ) * 3.0e-4_dp
END FUNCTION GC_RO2NO_A1_ac
FUNCTION GC_RO2NO_B1_ac( a0, c0 ) RESULT( k )
! Reaction rate for the "B" branch of these RO2 + NO reactions:
! MO2 + NO = CH2O + NO2 + HO2
! in which the "a1" parameter equals exactly 1.
!
! For these reactions, these Arrhenius law terms evaluate to 1:
! (300/T)**b0
! (300/T)**b1 * EXP(c1/T)
! because b0 = c0 = c1 = 0. Therefore we can skip computing
! these terms. This avoids excess CPU cycles. (bmy, 1/4/20)
!
REAL(dp), INTENT(IN) :: a0, c0
REAL(dp), PARAMETER :: one_minus_fyrno3 = 1.0_dp - 3.0e-4_dp
REAL(dp) :: k
!
k = a0 * EXP( c0 / TEMP ) * one_minus_fyrno3
END FUNCTION GC_RO2NO_B1_ac
FUNCTION GC_RO2NO_A2_aca( a0, c0, a1 ) RESULT( k )
! Reaction rate for the "A" branch of these RO2 + NO reactions,
! ETO2 + NO = ETNO3
! A3O2 + NO = NPRNO3
! R4O2 + NO = R4N2
! B3O2 + NO = IPRNO3
! in which the "a1" parameter is greater than 1.0.
!
! For these reactions, these Arrhenius law terms evaluate to 1:
! (300/T)**b0
! (300/T)**b1 * EXP(c1/T)
! because b0 = b1 = c1 = 0. Therefore we can skip computing
! these terms. This avoids excess CPU cycles. (bmy, 1/4/20)
!
REAL(dp), INTENT(IN) :: a0, c0, a1
REAL(dp) :: k0, k, yyyn, xxyn
REAL(dp) :: aaa, rarb, zzyn, fyrno3
!
k0 = a0 * EXP( c0 / TEMP )
xxyn = 1.94e-22_dp * EXP( 0.97_dp * a1 ) * NUMDEN
yyyn = 0.826_dp * ( ( 300.0_dp / TEMP )**8.1_dp )
aaa = LOG10( xxyn / yyyn )
zzyn = ( 1.0_dp / ( 1.0_dp + ( aaa * aaa ) ) )
rarb = ( xxyn / ( 1.0_dp + ( xxyn / yyyn ) ) ) * ( 0.411_dp**zzyn )
fyrno3 = ( rarb / ( 1.0_dp + rarb ) )
k = k0 * fyrno3
END FUNCTION GC_RO2NO_A2_aca
FUNCTION GC_RO2NO_B2_aca( a0, c0, a1 ) RESULT( k )
! Reaction rate for the "B" branch of these RO2 + NO reactions:
! ETO2 + NO = NO2 + HO2 + ...
! A3O2 + NO = NO2 + HO2 + ...
! R4O2 + NO = NO2 + 0.27HO2 + ...
! B3O2 + NO = NO2 + HO2 + ...
! in which the "a1" parameter is greater than 1.0.
!
! For these reactions, these Arrhenius law terms evaluate to 1:
! (300/T)**b0
! (300/T)**b1 * EXP(c1/T)
! because b0 = c0 = c1 = 0. Therefore we can skip computing
! these terms. This avoids excess CPU cycles. (bmy, 1/4/20)
!
! Use this function when a1 input argument is greater than 1.0.
! This avoids IF statements, which saves CPU cycles (bmy, 1/4/20)
!
REAL(dp), INTENT(IN) :: a0, c0, a1
REAL(dp) :: k0, k, yyyn, xxyn
REAL(dp) :: aaa, rarb, zzyn, fyrno3
!
k0 = a0 * EXP( c0 / TEMP )
xxyn = 1.94e-22_dp * EXP( 0.97_dp * a1 ) * NUMDEN
yyyn = 0.826_dp * ( K300_OVER_TEMP**8.1_dp )
aaa = LOG10( xxyn / yyyn )
zzyn = ( 1.0_dp / ( 1.0_dp + ( aaa * aaa ) ) )
rarb = ( xxyn / ( 1.0_dp + ( xxyn / yyyn ) ) ) * ( 0.411_dp**zzyn )
fyrno3 = ( rarb / ( 1.0_dp + rarb ) )
k = k0 * ( 1.0_dp - fyrno3 )
END FUNCTION GC_RO2NO_B2_aca
FUNCTION GCJPLEQ_acabab( a0, c0, a1, b1, a2, b2, fv ) RESULT( k )
! Calculates the equilibrium constant
! Find the backwards reaction by K=kforward/kbackwards
! Calculates the rate constant of the forward reaction
!
! Used to compute the rate for these reactions:
! PPN = RCO3 + NO2
! PAN = MCO3 + NO2
! ClOO {+M} = Cl + O2 {+M}
! Cl2O2 {+M} = 2ClO {+M}
!
! For these reactions, these Arrhenius law terms evaluate to 1:
! (300/T)**b0
! EXP(c1/T)
! EXP(c2/T)
! because b0 = c1 = c2 = 0. Therefore we can skip computing these terms.
! Also, fct1 = fct2 = 0, so we will skip those terms as well. This is
! more computationally efficient. (bmy, 1/25/20)
!
REAL(dp), INTENT(IN) :: a0, c0, a1, b1, a2, b2, fv
REAL(dp) :: k0, k1, k
!
k0 = a0 * EXP( c0 / TEMP ) ! backwards rxn rate
k1 = GCJPLPR_abab( a1, b1, a2, b2, fv ) ! forwards rxn rate
k = k1 / k0
END FUNCTION GCJPLEQ_acabab
FUNCTION GCJPLPR_aa( a1, a2, fv ) RESULT( k )
! Third body effect for pressure dependence of rate coefficients.
! a1 is Arrhenius parameters for the lower-limit rate.
! a2 is Arrhenius parameters for the upper-limit rate.
! fv is the falloff curve paramter, (see ATKINSON ET. AL (1992)
! J. Phys. Chem. Ref. Data 21, P. 1145). Usually fv = 0.6.
!
! Used to compute the rate for this reaction:
! Cl + PRPE {+M} = HCl + PO2 {+M}
!
! For this reactions, these Arrhenius law terms evaluate to 1:
! (300/T)**b1 * EXP(c1/T)
! (300/T)**b2 * EXP(c2/T)
! because b1 = b2 = c1 = c2 = 0. Therefore we can skip computing
! these terms. Also, fct1 = fct2 = 0, so we will skip computing
! these terms as well. This is more computationally efficient.
! (bmy, 1/25/20)
!
REAL(dp), INTENT(IN) :: a1, a2, fv
REAL(dp) :: rlow, xyrat, blog, fexp, k
!
rlow = a1 * NUMDEN
xyrat = rlow / a2 ! rhigh = a2
blog = LOG10( xyrat )
fexp = 1.0_dp / ( 1.0_dp + ( blog * blog ) )
k = rlow * ( fv**fexp ) / ( 1.0_dp + xyrat )
END FUNCTION GCJPLPR_aa
FUNCTION GCJPLPR_aba( a1, b1, a2, fv ) RESULT( k )
! Third body effect for pressure dependence of rate coefficients.
! a1, b1 are the Arrhenius parameters for the lower-limit rate.
! a2 is the Arrhenius parameters for the upper-limit rate.
! fv is the falloff curve paramter, (see ATKINSON ET. AL (1992)
! J. Phys. Chem. Ref. Data 21, P. 1145). Usually fv = 0.6.
!
! Used to compute the rate for these reactions:
! OH + OH {+M} = H2O2
! NO2 + OH {+M} = HNO3 {+M}
! Cl + O2 {+M} = ClOO {+M}
! SO2 + OH {+M} = SO4 + HO2
! Br + NO2 {+M} = BrNO2 {+M}
! NO + O {+M} = NO2 {+M}
! I + NO2 {+M} = IONO {+M}
! I + NO {+M} = INO {+M}
!
! For these reactions, these Arrhenius law terms evaluate to 1:
! EXP(c1/T)
! (300/T)**b2 * EXP(c2/T)
! because b2 = c1 = c2 = 0. Therefore we can skip computing these
! terms. Also, fct1 = fct2 = 0, so we will skip computing these
! terms as well. This is more computationally efficient.
! (bmy, 1/25/20)
!
REAL(dp), INTENT(IN) :: a1, b1, a2, fv
REAL(dp) :: rlow, xyrat, blog, fexp, k
!
rlow = a1 * ( K300_OVER_TEMP**b1 ) * NUMDEN
xyrat = rlow / a2 ! rhigh = a2
blog = LOG10( xyrat )
fexp = 1.0_dp / ( 1.0_dp + ( blog * blog ) )
k = rlow * ( fv**fexp ) / ( 1.0_dp + xyrat )
END FUNCTION GCJPLPR_aba
FUNCTION GCJPLPR_abab( a1, b1, a2, b2, fv ) RESULT( k )
! Third body effect for pressure dependence of rate coefficients.
! a1, b1 are the Arrhenius parameters for the lower-limit rate.
! a2, b2 are the Arrhenius parameters for the upper-limit rate.
! fv is the falloff curve paramter, (see ATKINSON ET. AL (1992)
! J. Phys. Chem. Ref. Data 21, P. 1145). Usually fv = 0.6.
!
! Used to compute the rate for these reactions:
! NO + OH {+M} = HNO2 {+M}
! HO2 + NO2 {+M} = HNO4
! NO2 + NO3 {+M} = N2O5
! ClO + NO2 {+M} = ClNO3 {+M}
! MCO3 + NO2 {+M} = PAN
! RCO3 + NO2 {+M} = PPN
! PRPE + OH {+M} = PO2
! MO2 + NO2 {+M} = MPN {+M}
! BrO + NO2 {+M} = BrNO3 {+M}
! NO2 + O {+M} = NO3 {+M}
! H + O2 {+M} = HO2 {+M}
! IO + NO2 {+M} = IONO2 {+M}
!
! For these reactions, these Arrhenius law terms evaluate to 1:
! EXP(c1/T)
! EXP(c2/T)
! because c1 = c2 = 0. Therefore we can skip computing these
! terms. Also, fct1 = fct2 = 0, so we will skip computing these
! terms as well. This is more computationally efficient.
! (bmy, 1/25/20)
!
REAL(dp), INTENT(IN) :: a1, b1, a2, b2, fv
REAL(dp) :: rlow, rhigh, xyrat, blog, fexp, k
!
rlow = a1 * ( K300_OVER_TEMP**b1 ) * NUMDEN
rhigh = a2 * ( K300_OVER_TEMP**b2 )
xyrat = rlow / rhigh
blog = LOG10( xyrat )
fexp = 1.0_dp / ( 1.0_dp + ( blog * blog ) )
k = rlow * ( fv**fexp ) / ( 1.0_dp + xyrat )
END FUNCTION GCJPLPR_abab
FUNCTION GCJPLPR_abcabc( a1, b1, c1, a2, b2, c2, fv ) RESULT( k )
! Third body effect for pressure dependence of rate coefficients.
! a1, b1, c1 are the Arrhenius parameters for the lower-limit rate.
! a2, b2, c2 are the Arrhenius parameters for the upper-limit rate.
! fv is the falloff curve paramter, (see ATKINSON ET. AL (1992)
! J. Phys. Chem. Ref. Data 21, P. 1145). Usually fv = 0.6.
!
! Used to compute the rate for these reactions:
! HNO4 {+M} = HO2 + NO2
! N2O5 {+M} = NO2 + NO3
! MPN {+M} = MO2 + NO2
!
REAL(dp), INTENT(IN) :: a1, b1, c1, a2, b2, c2, fv
REAL(dp) :: rlow, rhigh, xyrat, blog, fexp, k
!
rlow = a1 * ( K300_OVER_TEMP**b1 ) * EXP( c1 / TEMP ) * NUMDEN
rhigh = a2 * ( K300_OVER_TEMP**b2 ) * EXP( c2 / TEMP )
xyrat = rlow / rhigh
blog = LOG10( xyrat )
fexp = 1.0_dp / ( 1.0_dp + ( blog * blog ) )
k = rlow * ( fv**fexp ) / ( 1.0_dp + xyrat )
END FUNCTION GCJPLPR_abcabc
FUNCTION GCJPLAC_ababac( a1, b1, a2, b2, a3, c3, fv ) RESULT( k )
! Rate coefficient for activation reactions competing with a
! termolecular association pathway
! a1, b1 are the Arrhenius parameters for the lower-limit rate.
! a2, b2 are the Arrhenius parameters for the upper-limit rate.
! a3, c3 are Arrhenius parameters for the activation path
! fv is the falloff curve parameter, usually = 0.6.
!
! Used to compute the rate for these reactions:
! NO2 + O = O2 + NO
! HNO3 + OH = NO3 + H2O
! CO + OH = HO2 + CO2
!
REAL(dp), INTENT(IN) :: a1, b1, a2, b2, a3, c3, fv
REAL(dp) :: rlow, rhigh, xyrat, blog
REAL(dp) :: fexp, k1, k2, k
!
rlow = a1 * ( K300_OVER_TEMP**b1 ) * NUMDEN
rhigh = a2 * ( K300_OVER_TEMP**b2 )
xyrat = rlow / rhigh
blog = LOG10( xyrat )
fexp = 1.0_dp / ( 1.0_dp + ( blog * blog ) )
k1 = rlow * ( fv**fexp ) / ( 1.0_dp + xyrat )
k2 = a3 * EXP( c3 / TEMP )
k = k2 * (1.0_dp - (k1 / rhigh) )
END FUNCTION GCJPLAC_ababac
!#########################################################################
!##### RATE-LAW FUNCTIONS FOR HETEROGENEOUS REACTIONS #####
!##### Some common functions are defined in rateLawUtilFuncs.F90 #####
!#########################################################################
!=========================================================================
! Hetchem rate-law functions for BrNO3
!=========================================================================
FUNCTION BrNO3uptkByH2O( H ) RESULT( k )
!
! Computes the uptake rate [1/s] for BrNO3 + H2O (cf. Johan Schmidt)
!
TYPE(HetState), INTENT(IN) :: H ! Hetchem State
REAL(dp) :: k ! rxn rate [1/s]
!
REAL(dp) :: gamma, gamLiq, gamIce, srMW ! local vars
!
k = 0.0_dp
gamLiq = 0.0021_dp * TEMP - 0.561_dp ! Rxn prob, liq (Deiber 2004)
gamIce = 5.3e-4_dp * EXP( 1100.0_dp / TEMP ) ! Rxn prob on ice
srMw = SR_MW(ind_BrNO3)
!
! BrNO3 + H2O on sulfate and sea salt (clear sky)
gamma = gamLiq
k = k + Ars_L1K( H%ClearFr * H%xArea(SUL), H%xRadi(SUL), gamma, srMw )
k = k + Ars_L1K( H%ClearFr * H%xArea(SSA), H%xRadi(SSA), gamma, srMw )
k = k + Ars_L1K( H%ClearFr * H%xArea(SSC), H%xRadi(SSC), gamma, srMw )
k = k + H%xArea(SLA) * H%KHETI_SLA(BrNO3_plus_H2O)
!
! BrNO3 + H2O uptake on irregular ice cloud (clear sky)
gamma = 0.3_dp ! rxn prob, ice [1]
IF ( H%NatSurface ) gamma = 0.001_dp ! rxn prob, NAT [1]
k = k + Ars_L1K( H%ClearFr * H%xArea(IIC), H%xRadi(IIC), gamma, srMw )
!
! BrNO3 + H2O in tropospheric cloud
k = k + CloudHet( H, srMw, gamLiq, gamIce, 1.0_dp, 1.0_dp )
!
! Assume BrNO3 is limiting, so update the removal rate accordingly
k = kIIR1Ltd( C(ind_BrNO3), C(ind_H2O), k )
END FUNCTION BrNO3uptkByH2O
FUNCTION BrNO3uptkByHCl( H ) RESULT( k )
!
! Computes uptake rate for BrNO3(g) + HCl(l,s)
! in polar stratospheric clouds and on tropospheric sulfate.
!
TYPE(HetState), INTENT(IN) :: H ! Hetchem State
REAL(dp) :: k ! rxn prob[1], rxn rate [1/s]
REAL(dp) :: srMw ! local vars
!
k = 0.0_dp
srMw = SR_MW(ind_BrNO3)
!
! Apply BrNO3 uptake in stratosphere
! NOTE: NAT and ICE both use the same gamma = 0.3
IF ( H %stratBox ) THEN
k = k + Ars_L1K( H%xArea(SUL), H%xRadi(SUL), 0.9_dp, srMw )
k = k + H%xArea(SLA) * H%KHETI_SLA(BrNO3_plus_HCl)
k = k + Ars_L1K( H%xArea(IIC), H%xRadi(IIC), 0.3_dp, srMw )
ENDIF
! Assume BrNO3 is limiting, so update the removal rate accordingly
k = kIIR1Ltd( C(ind_BrNO3), C(ind_HCl), k )
! Force to zero if HetRate flag is turned on
IF ( H%TurnOffHetRates ) k = 0.0_dp
END FUNCTION BrNO3uptkByHCl
!=========================================================================
! Hetchem rate-law functions for ClNO2
!=========================================================================
SUBROUTINE Gam_ClNO2( H, radius, pH, C_Cl, C_Br, gamma, branchCl, branchBr )
!
! Calculates reactive uptake coefficient [1] for
! ClNO2 + Cl- and ClNO2 + Br-.
!
TYPE(HetState), INTENT(IN) :: H ! Hetchem State
REAL(dp), INTENT(IN) :: Radius ! Radius [cm]
REAL(dp), INTENT(IN) :: C_Cl ! Cl- conc [mol/L]
REAL(dp), INTENT(IN) :: C_Br ! Br- conc [mol/L]
REAL(dp), INTENT(IN) :: pH ! H+ conc
REAL(dp), INTENT(OUT) :: gamma ! Rxn prob [1]
REAL(dp), INTENT(OUT) :: branchCl ! Branching ratio, Cl path
REAL(dp), INTENT(OUT) :: branchBr ! Branching ratio, Br path
!
REAL(dp), PARAMETER :: INV_AB = 1.0_dp / 0.01_dp ! 1/mass accom coeff
REAL(dp), PARAMETER :: D_l = 1.0e-5_dp ! Liq phase diffusion coef
!
REAL(dp) :: cavg, gb_tot, H_X, k_Cl
REAL(dp) :: k_Br, k_tot, l_r, M_X
!
! Thermal velocity (cm/s)
M_X = MW(ind_ClNO2) * 1.0e-3_dp
cavg = SQRT( EIGHT_RSTARG_T / ( H%Pi * M_X ) ) * 100.0_dp
!
! Henry's law [M/bar]
H_X = 4.5e-2_dp * CON_ATM_BAR
!
! Reaction rates (Cl path, Br path, total)
k_Cl = 1.0e+7_dp * C_Cl
IF ( pH >= 2.0_dp ) k_Cl = 0.0_dp
k_Br = ( 1.01e-1_dp / ( H_X * H_X * D_l ) ) * C_Br
k_tot = k_Cl + k_Br
!
! Uptake coefficient [1] and branching ratios [1] for Cl, Br paths
! Prevent div by zero
gamma = 0.0_dp
branchCl = 0.0_dp
branchBr = 0.0_dp
IF ( k_tot > 0.0_dp ) THEN
l_r = SQRT( D_l / k_tot )
gb_tot = FOUR_R_T * H_X * l_r * k_tot / cavg
gb_tot = gb_tot * ReactoDiff_Corr( radius, l_r )
gamma = 1.0_dp / ( INV_AB + 1.0_dp / gb_tot )
branchCl = k_Cl / k_tot
branchBr = k_Br / k_tot
ENDIF
END SUBROUTINE Gam_ClNO2
FUNCTION ClNO2uptkByBrSALA( H ) RESULT( k )
!
! Computes the uptake rate [1/s] of ClNO2 + BrSALA.
!
TYPE(HetState), INTENT(IN) :: H ! Hetchem State
REAL(dp) :: k ! Rxn rate [1/s]
!
REAL(dp) :: area, gamma, branch
REAL(dp) :: branchBr, dummy, srMw
!
k = 0.0_dp
srMw = SR_MW(ind_ClNO2)
!
! ClNO2 + BrSALA uptake rate [1/s] in tropospheric cloud
IF ( .not. H%stratBox ) THEN
CALL Gam_ClNO2( &
H, H%rLiq, H%phCloud, H%Cl_conc_Cld, &
H%Br_conc_Cld, gamma, dummy, branchBr )
branch = branchBr * H%frac_Br_CldA
k = k + CloudHet( H, srMw, gamma, 0.0_dp, branch, 0.0_dp )
ENDIF
!
! ClNO2 + BrSALA uptake rate [1/s] on fine sea salt aerosol, in clear sky
CALL Gam_ClNO2( &
H, H%aClRadi, H%phSSA(1), H%Cl_conc_SSA, &
H%Br_Conc_SSA, gamma, dummy, branchBr )
area = H%ClearFr * H%aClArea
k = k + Ars_L1K( area, H%aClRadi, gamma, srMw ) * branchBr
! Assume ClNO2 is limiting, so recompute reaction rate accordingly
k = kIIR1Ltd( C(ind_ClNO2), C(ind_BrSALA), k )
END FUNCTION ClNO2uptkByBrSALA
FUNCTION ClNO2uptkByBrSALC( H ) RESULT( k )
!
! Computes the uptake rate [1/s] of ClNO2 + BrSALC.
!
TYPE(HetState), INTENT(IN) :: H ! Hetchem State
REAL(dp) :: k ! Rxn rate [1/s]
!
REAL(dp) :: area, gamma, branch
REAL(dp) :: branchBr, dummy, srMw
!
k = 0.0_dp
srMw = SR_MW(ind_ClNO2)
!
! ClNO2 + BrSALA uptake rate [1/s] in tropospheric cloud
IF ( .not. H%stratBox ) THEN
CALL Gam_ClNO2( &
H, H%rLiq, H%phCloud, H%Cl_conc_Cld, &
H%Br_conc_Cld, gamma, dummy, branchBr )
branch = branchBr * H%frac_Br_CldC
k = k + CloudHet( H, srMw, gamma, 0.0_dp, branch, 0.0_dp )
ENDIF
!
! ClNO2 + BrSALA uptake rate [1/s] on fine sea salt aerosol, in clear sky
CALL Gam_ClNO2( &
H, H%xRadi(SSC), H%phSSA(2), H%Cl_conc_SSC, &
H%Br_Conc_SSC, gamma, dummy, branchBr )
area = H%ClearFr * H%xArea(SSC)
k = k + Ars_L1K( area, H%xRadi(SSC), gamma, srMw ) * branchBr
! Assume ClNO2 is limiting, so recompute reaction rate accordingly
k = kIIR1Ltd( C(ind_ClNO2), C(ind_BrSALC), k )
END FUNCTION ClNO2uptkByBrSALC
FUNCTION ClNO2uptkByHBr( H ) RESULT( k )
!
! Computes the uptake rate [1/s] of ClNO2 + HCl.
!
TYPE(HetState), INTENT(IN) :: H ! Hetchem State
REAL(dp) :: k ! Rxn rate [1/s]
!
REAL(dp) :: gamma, branch, branchBr, dummy, srMw
!
k = 0.0_dp
srMw = SR_MW(ind_ClNO2)
!
! ClNO2 + HCl uptake rate [1/s] in tropospheric cloud
IF ( .not. H%stratBox ) THEN
CALL Gam_ClNO2( &
H, H%rLiq, H%phCloud, H%Cl_conc_Cld, &
H%Br_conc_Cld, gamma, dummy, branchBr )
branch = branchBr * H%frac_Br_CldG
k = k + CloudHet( H, srMw, gamma, 0.0_dp, branch, 0.0_dp )