-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
615 lines (491 loc) · 24.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
from torch import nn
from torch.nn.init import *
from torch.autograd import Function
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import TRANRD
import math
import numpy as np
from colorama import init
from colorama import Fore, Back, Style
'''np.random.seed(1)
torch.manual_seed(1)
torch.cuda.manual_seed_all(1)
torch.cuda.manual_seed(1)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False'''
init(autoreset=True)
# definition of Gradient Reversal Layer
class GradReverse(Function):
@staticmethod
def forward(ctx, x, beta):
ctx.beta = beta
return x.view_as(x)
@staticmethod
def backward(ctx, grad_output):
grad_input = grad_output.neg() * ctx.beta
return grad_input, None
# definition of Gradient Scaling Layer
class GradScale(Function):
@staticmethod
def forward(ctx, x, beta):
ctx.beta = beta
return x.view_as(x)
@staticmethod
def backward(ctx, grad_output):
grad_input = grad_output * ctx.beta
return grad_input, None
# definition of Temporal-ConvNet Layer
class TCL(nn.Module):
def __init__(self, conv_size, dim):
super(TCL, self).__init__()
self.conv2d = nn.Conv2d(dim, dim, kernel_size=(conv_size,1), padding=(conv_size//2,0))
# initialization
kaiming_normal_(self.conv2d.weight)
def forward(self, x):
x = self.conv2d(x)
return x
class VideoModel(nn.Module):
def __init__(self, num_class, baseline_type, frame_aggregation, modality,
train_segments=5, val_segments=25,
base_model='resnet101', path_pretrained='', new_length=None,
before_softmax=True,
dropout_i=0.5, dropout_v=0.5, use_bn='none', ens_DA='none',
<<<<<<< HEAD
crop_num=1, partial_bn=True, verbose=True, add_fc=1, fc_dim=512,
=======
crop_num=1, partial_bn=True, verbose=True, add_fc=1, fc_dim=1024,
>>>>>>> origin/master
n_rnn=1, rnn_cell='LSTM', n_directions=1, n_ts=5,
use_attn='TransAttn', n_attn=1, use_attn_frame='none',
share_params='Y'):
super(VideoModel, self).__init__()
self.modality = modality
self.train_segments = train_segments
self.val_segments = val_segments
self.baseline_type = baseline_type
self.frame_aggregation = frame_aggregation
self.reshape = True
self.before_softmax = before_softmax
self.dropout_rate_i = dropout_i
self.dropout_rate_v = dropout_v
self.use_bn = use_bn
self.ens_DA = ens_DA
self.crop_num = crop_num
self.add_fc = add_fc
self.fc_dim = fc_dim
self.share_params = share_params
# RNN
self.n_layers = n_rnn
self.rnn_cell = rnn_cell
self.n_directions = n_directions
self.n_ts = n_ts # temporal segment
# Attention
self.use_attn = use_attn
self.n_attn = n_attn
self.use_attn_frame = use_attn_frame
if new_length is None:
self.new_length = 1 if modality == "RGB" else 5
else:
self.new_length = new_length
if verbose:
print(("""
Initializing TSN with base model: {}.
TSN Configurations:
input_modality: {}
num_segments: {}
new_length: {}
""".format(base_model, self.modality, self.train_segments, self.new_length)))
self._prepare_DA(num_class, base_model)
if not self.before_softmax:
self.softmax = nn.Softmax()
self._enable_pbn = partial_bn
if partial_bn:
self.partialBN(True)
def _prepare_DA(self, num_class, base_model): # convert the model to DA framework
if base_model == 'c3d': # C3D mode: in construction...
from C3D_model import C3D
model_test = C3D()
self.feature_dim = model_test.fc7.in_features
else:
model_test = getattr(torchvision.models, base_model)(True) # model_test is only used for getting the dim #
self.feature_dim = model_test.fc.in_features
del model_test
std = 0.001
feat_shared_dim = min(self.fc_dim, self.feature_dim) if self.add_fc > 0 and self.fc_dim > 0 else self.feature_dim
feat_frame_dim = feat_shared_dim
self.relu = nn.ReLU(inplace=True)
self.dropout_i = nn.Dropout(p=self.dropout_rate_i)
self.dropout_v = nn.Dropout(p=self.dropout_rate_v)
#------ frame-level layers (shared layers + source layers + domain layers) ------#
if self.add_fc < 1:
raise ValueError(Back.RED + 'add at least one fc layer')
# 1. shared feature layers
self.fc_feature_shared_source = nn.Linear(self.feature_dim, feat_shared_dim)
normal_(self.fc_feature_shared_source.weight, 0, std)
constant_(self.fc_feature_shared_source.bias, 0)
if self.add_fc > 1:
self.fc_feature_shared_2_source = nn.Linear(feat_shared_dim, feat_shared_dim)
normal_(self.fc_feature_shared_2_source.weight, 0, std)
constant_(self.fc_feature_shared_2_source.bias, 0)
if self.add_fc > 2:
self.fc_feature_shared_3_source = nn.Linear(feat_shared_dim, feat_shared_dim)
normal_(self.fc_feature_shared_3_source.weight, 0, std)
constant_(self.fc_feature_shared_3_source.bias, 0)
# 2. frame-level feature layers
self.fc_feature_source = nn.Linear(feat_shared_dim, feat_frame_dim)
normal_(self.fc_feature_source.weight, 0, std)
constant_(self.fc_feature_source.bias, 0)
# 3. domain feature layers (frame-level)
self.fc_feature_domain = nn.Linear(feat_shared_dim, feat_frame_dim)
normal_(self.fc_feature_domain.weight, 0, std)
constant_(self.fc_feature_domain.bias, 0)
# 4. classifiers (frame-level)
self.fc_classifier_source = nn.Linear(feat_frame_dim, num_class)
normal_(self.fc_classifier_source.weight, 0, std)
constant_(self.fc_classifier_source.bias, 0)
self.fc_classifier_domain = nn.Linear(feat_frame_dim, 1)
normal_(self.fc_classifier_domain.weight, 0, std)
constant_(self.fc_classifier_domain.bias, 0)
if self.share_params == 'N':
self.fc_feature_shared_target = nn.Linear(self.feature_dim, feat_shared_dim)
normal_(self.fc_feature_shared_target.weight, 0, std)
constant_(self.fc_feature_shared_target.bias, 0)
if self.add_fc > 1:
self.fc_feature_shared_2_target = nn.Linear(feat_shared_dim, feat_shared_dim)
normal_(self.fc_feature_shared_2_target.weight, 0, std)
constant_(self.fc_feature_shared_2_target.bias, 0)
if self.add_fc > 2:
self.fc_feature_shared_3_target = nn.Linear(feat_shared_dim, feat_shared_dim)
normal_(self.fc_feature_shared_3_target.weight, 0, std)
constant_(self.fc_feature_shared_3_target.bias, 0)
self.fc_feature_target = nn.Linear(feat_shared_dim, feat_frame_dim)
normal_(self.fc_feature_target.weight, 0, std)
constant_(self.fc_feature_target.bias, 0)
self.fc_classifier_target = nn.Linear(feat_frame_dim, num_class)
normal_(self.fc_classifier_target.weight, 0, std)
constant_(self.fc_classifier_target.bias, 0)
if self.use_bn != 'none':
self.bn_shared_S = nn.BatchNorm1d(feat_shared_dim)
self.bn_shared_T = nn.BatchNorm1d(feat_shared_dim)
self.bn_source_S = nn.BatchNorm1d(feat_frame_dim)
self.bn_source_T = nn.BatchNorm1d(feat_frame_dim)
if self.frame_aggregation == 'trn':
self.num_bottleneck = 512
self.TRANRD = TRANRD.RelationModule(feat_shared_dim, self.num_bottleneck, self.train_segments)
self.bn_trn_S = nn.BatchNorm1d(self.num_bottleneck)
self.bn_trn_T = nn.BatchNorm1d(self.num_bottleneck)
elif self.frame_aggregation == 'tranrd':
self.num_bottleneck = 256
self.TRANRD = TRANRD.RelationModuleMultiScale(feat_shared_dim, self.num_bottleneck, self.train_segments)
self.bn_trn_S = nn.BatchNorm1d(self.num_bottleneck)
self.bn_trn_T = nn.BatchNorm1d(self.num_bottleneck)
elif self.frame_aggregation == 'temconv': # 3. temconv
self.tcl_3_1 = TCL(3, 1)
self.tcl_5_1 = TCL(5, 1)
self.bn_1_S = nn.BatchNorm1d(feat_frame_dim)
self.bn_1_T = nn.BatchNorm1d(feat_frame_dim)
self.tcl_3_2 = TCL(3, 1)
self.tcl_5_2 = TCL(5, 2)
self.bn_2_S = nn.BatchNorm1d(feat_frame_dim)
self.bn_2_T = nn.BatchNorm1d(feat_frame_dim)
self.conv_fusion = nn.Sequential(
nn.Conv2d(2, 1, kernel_size=(1, 1), padding=(0, 0)),
nn.ReLU(inplace=True),
)
# ------ video-level layers (source layers + domain layers) ------#
if self.frame_aggregation == 'avgpool': # 1. avgpool
feat_aggregated_dim = feat_shared_dim
if 'tranrd' in self.frame_aggregation : # 4. trn
feat_aggregated_dim = self.num_bottleneck
elif self.frame_aggregation == 'rnn': # 2. rnn
feat_aggregated_dim = self.hidden_dim
elif self.frame_aggregation == 'temconv': # 3. temconv
feat_aggregated_dim = feat_shared_dim
feat_video_dim = feat_aggregated_dim
# 1. source feature layers (video-level)
self.fc_feature_video_source = nn.Linear(feat_aggregated_dim, feat_video_dim)
normal_(self.fc_feature_video_source.weight, 0, std)
constant_(self.fc_feature_video_source.bias, 0)
self.fc_feature_video_source_2 = nn.Linear(feat_video_dim, feat_video_dim)
normal_(self.fc_feature_video_source_2.weight, 0, std)
constant_(self.fc_feature_video_source_2.bias, 0)
# 2. domain feature layers (video-level)
self.fc_feature_domain_video = nn.Linear(feat_aggregated_dim, feat_video_dim)
normal_(self.fc_feature_domain_video.weight, 0, std)
constant_(self.fc_feature_domain_video.bias, 0)
# 3. classifiers (video-level)
self.fc_classifier_video_source = nn.Linear(feat_video_dim, num_class)
normal_(self.fc_classifier_video_source.weight, 0, std)
constant_(self.fc_classifier_video_source.bias, 0)
if self.ens_DA == 'MCD':
self.fc_classifier_video_source_2 = nn.Linear(feat_video_dim, num_class) # second classifier for self-ensembling
normal_(self.fc_classifier_video_source_2.weight, 0, std)
constant_(self.fc_classifier_video_source_2.bias, 0)
self.fc_classifier_domain_video = nn.Linear(feat_video_dim, 1)
normal_(self.fc_classifier_domain_video.weight, 0, std)
constant_(self.fc_classifier_domain_video.bias, 0)
if self.frame_aggregation == 'tranrd':
self.relation_domain_classifier_all = nn.ModuleList()
for i in range(self.train_segments-1):
relation_domain_classifier = nn.Sequential(
nn.Linear(feat_aggregated_dim, feat_video_dim),
nn.ReLU(),
nn.Linear(feat_video_dim, 2)
)
self.relation_domain_classifier_all += [relation_domain_classifier]
if self.share_params == 'N':
self.fc_feature_video_target = nn.Linear(feat_aggregated_dim, feat_video_dim)
normal_(self.fc_feature_video_target.weight, 0, std)
constant_(self.fc_feature_video_target.bias, 0)
self.fc_feature_video_target_2 = nn.Linear(feat_video_dim, feat_video_dim)
normal_(self.fc_feature_video_target_2.weight, 0, std)
constant_(self.fc_feature_video_target_2.bias, 0)
self.fc_classifier_video_target = nn.Linear(feat_video_dim, num_class)
normal_(self.fc_classifier_video_target.weight, 0, std)
constant_(self.fc_classifier_video_target.bias, 0)
# BN for the above layers
if self.use_bn != 'none': # S & T: use AdaBN (ICLRW 2017) approach
self.bn_source_video_S = nn.BatchNorm1d(feat_video_dim)
self.bn_source_video_T = nn.BatchNorm1d(feat_video_dim)
self.bn_source_video_2_S = nn.BatchNorm1d(feat_video_dim)
self.bn_source_video_2_T = nn.BatchNorm1d(feat_video_dim)
self.alpha = torch.ones(1)
if self.use_bn == 'AutoDIAL':
self.alpha = nn.Parameter(self.alpha)
# ------ attention mechanism ------#
# conventional attention
if self.use_attn == 'general':
self.attn_layer = nn.Sequential(
nn.Linear(feat_aggregated_dim, feat_aggregated_dim),
nn.Tanh(),
nn.Linear(feat_aggregated_dim, 1)
)
def train(self, mode=True):
# not necessary in our setting
"""
Override the default train() to freeze the BN parameters
:return:
"""
super(VideoModel, self).train(mode)
count = 0
if self._enable_pbn:
print("Freezing BatchNorm2D except the first one.")
for m in self.base_model.modules():
if isinstance(m, nn.BatchNorm2d):
count += 1
if count >= (2 if self._enable_pbn else 1):
m.eval()
# shutdown update in frozen mode
m.weight.requires_grad = False
m.bias.requires_grad = False
def partialBN(self, enable):
self._enable_pbn = enable
def get_trans_attn(self, pred_domain):
softmax = nn.Softmax(dim=1)
logsoftmax = nn.LogSoftmax(dim=1)
entropy = torch.sum(-softmax(pred_domain) * logsoftmax(pred_domain), 1)
weights = 1 - entropy
return weights
def get_general_attn(self, feat):
num_segments = feat.size()[1]
feat = feat.view(-1, feat.size()[-1]) # reshape features: 128x4x256 --> (128x4)x256
weights = self.attn_layer(feat) # e.g. (128x4)x1
weights = weights.view(-1, num_segments, weights.size()[-1]) # reshape attention weights: (128x4)x1 --> 128x4x1
weights = F.softmax(weights, dim=1) # softmax over segments ==> 128x4x1
return weights
def get_attn_feat_frame(self, feat_fc, pred_domain): # not used for now
if self.use_attn == 'TransAttn':
weights_attn = self.get_trans_attn(pred_domain)
elif self.use_attn == 'general':
weights_attn = self.get_general_attn(feat_fc)
weights_attn = weights_attn.view(-1, 1).repeat(1,feat_fc.size()[-1]) # reshape & repeat weights (e.g. 16 x 512)
feat_fc_attn = (weights_attn+1) * feat_fc
return feat_fc_attn
def get_attn_feat_relation(self, feat_fc, pred_domain, num_segments):
if self.use_attn == 'TransAttn':
weights_attn = self.get_trans_attn(pred_domain)
elif self.use_attn == 'general':
weights_attn = self.get_general_attn(feat_fc)
weights_attn = weights_attn.view(-1, num_segments-1, 1).repeat(1,1,feat_fc.size()[-1]) # reshape & repeat weights (e.g. 16 x 4 x 256)
feat_fc_attn = (weights_attn+1) * feat_fc
return feat_fc_attn, weights_attn[:,:,0]
def aggregate_frames(self, feat_fc, num_segments, pred_domain):
feat_fc_video = None
if self.frame_aggregation == 'rnn':
# 2. RNN
feat_fc_video = feat_fc.view((-1, num_segments) + feat_fc.size()[-1:]) # reshape for RNN
# temporal segments and pooling
len_ts = round(num_segments/self.n_ts)
num_extra_f = len_ts*self.n_ts-num_segments
if num_extra_f < 0: # can remove last frame-level features
feat_fc_video = feat_fc_video[:, :len_ts * self.n_ts, :] # make the temporal length can be divided by n_ts (16 x 25 x 512 --> 16 x 24 x 512)
elif num_extra_f > 0: # need to repeat last frame-level features
feat_fc_video = torch.cat((feat_fc_video, feat_fc_video[:,-1:,:].repeat(1,num_extra_f,1)), 1) # make the temporal length can be divided by n_ts (16 x 5 x 512 --> 16 x 6 x 512)
feat_fc_video = feat_fc_video.view(
(-1, self.n_ts, len_ts) + feat_fc_video.size()[2:]) # 16 x 6 x 512 --> 16 x 3 x 2 x 512
feat_fc_video = nn.MaxPool2d(kernel_size=(len_ts, 1))(
feat_fc_video) # 16 x 3 x 2 x 512 --> 16 x 3 x 1 x 512
feat_fc_video = feat_fc_video.squeeze(2) # 16 x 3 x 1 x 512 --> 16 x 3 x 512
hidden_temp = torch.zeros(self.n_layers * self.n_directions, feat_fc_video.size(0),
self.hidden_dim // self.n_directions).cuda()
if self.rnn_cell == 'LSTM':
hidden_init = (hidden_temp, hidden_temp)
elif self.rnn_cell == 'GRU':
hidden_init = hidden_temp
self.rnn.flatten_parameters()
feat_fc_video, hidden_final = self.rnn(feat_fc_video, hidden_init) # e.g. 16 x 25 x 512
# get the last feature vector
feat_fc_video = feat_fc_video[:, -1, :]
else:
# 1. averaging
feat_fc_video = feat_fc.view((-1, 1, num_segments) + feat_fc.size()[-1:]) # reshape based on the segments (e.g. 16 x 1 x 5 x 512)
if self.use_attn == 'TransAttn': # get the attention weighting
weights_attn = self.get_trans_attn(pred_domain)
weights_attn = weights_attn.view(-1, 1, num_segments,1).repeat(1,1,1,feat_fc.size()[-1]) # reshape & repeat weights (e.g. 16 x 1 x 5 x 512)
feat_fc_video = (weights_attn+1) * feat_fc_video
feat_fc_video = nn.AvgPool2d([num_segments, 1])(feat_fc_video) # e.g. 16 x 1 x 1 x 512
feat_fc_video = feat_fc_video.squeeze(1).squeeze(1) # e.g. 16 x 512
return feat_fc_video
def final_output(self, pred, pred_video, num_segments):
if self.baseline_type == 'video':
base_out = pred_video
else:
base_out = pred
if not self.before_softmax:
base_out = self.softmax(base_out)
output = base_out
if self.baseline_type == 'tsn':
if self.reshape:
base_out = base_out.view((-1, num_segments) + base_out.size()[1:]) # e.g. 16 x 3 x 12 (3 segments)
output = base_out.mean(1) # e.g. 16 x 12
return output
def domainAlign(self, input_S, input_T, is_train, name_layer, alpha, num_segments, dim):
input_S = input_S.view((-1, dim, num_segments) + input_S.size()[-1:]) # reshape based on the segments (e.g. 80 x 512 --> 16 x 1 x 5 x 512)
input_T = input_T.view((-1, dim, num_segments) + input_T.size()[-1:]) # reshape based on the segments
# clamp alpha
alpha = max(alpha,0.5)
# rearange source and target data
num_S_1 = int(round(input_S.size(0) * alpha))
num_S_2 = input_S.size(0) - num_S_1
num_T_1 = int(round(input_T.size(0) * alpha))
num_T_2 = input_T.size(0) - num_T_1
if is_train and num_S_2 > 0 and num_T_2 > 0:
input_source = torch.cat((input_S[:num_S_1], input_T[-num_T_2:]), 0)
input_target = torch.cat((input_T[:num_T_1], input_S[-num_S_2:]), 0)
else:
input_source = input_S
input_target = input_T
# adaptive BN
input_source = input_source.view((-1, ) + input_source.size()[-1:]) # reshape to feed BN (e.g. 16 x 1 x 5 x 512 --> 80 x 512)
input_target = input_target.view((-1, ) + input_target.size()[-1:])
if name_layer == 'shared':
input_source_bn = self.bn_shared_S(input_source)
input_target_bn = self.bn_shared_T(input_target)
elif 'tranrd' in name_layer:
input_source_bn = self.bn_trn_S(input_source)
input_target_bn = self.bn_trn_T(input_target)
elif name_layer == 'temconv_1':
input_source_bn = self.bn_1_S(input_source)
input_target_bn = self.bn_1_T(input_target)
elif name_layer == 'temconv_2':
input_source_bn = self.bn_2_S(input_source)
input_target_bn = self.bn_2_T(input_target)
input_source_bn = input_source_bn.view((-1, dim, num_segments) + input_source_bn.size()[-1:]) # reshape back (e.g. 80 x 512 --> 16 x 1 x 5 x 512)
input_target_bn = input_target_bn.view((-1, dim, num_segments) + input_target_bn.size()[-1:]) #
if is_train and num_S_2 > 0 and num_T_2 > 0:
input_source_bn = torch.cat((input_source_bn[:num_S_1], input_target_bn[-num_S_2:]), 0)
input_target_bn = torch.cat((input_target_bn[:num_T_1], input_source_bn[-num_T_2:]), 0)
if name_layer == 'shared' or name_layer == 'trn_sum':
input_source_bn = input_source_bn.view((-1,) + input_source_bn.size()[-1:]) # (e.g. 16 x 1 x 5 x 512 --> 80 x 512)
input_target_bn = input_target_bn.view((-1,) + input_target_bn.size()[-1:])
elif name_layer == 'tranrd':
input_source_bn = input_source_bn.view((-1, num_segments) + input_source_bn.size()[-1:]) # (e.g. 16 x 1 x 5 x 512 --> 80 x 512)
input_target_bn = input_target_bn.view((-1, num_segments) + input_target_bn.size()[-1:])
return input_source_bn, input_target_bn
def forward(self, input_source, input_target, beta, mu, is_train, reverse):
batch_source = input_source.size()[0]
batch_target = input_target.size()[0]
num_segments = self.train_segments if is_train else self.val_segments
# sample_len = (3 if self.modality == "RGB" else 2) * self.new_length
sample_len = self.new_length
feat_all_source = []
feat_all_target = []
pred_domain_all_source = []
pred_domain_all_target = []
# input_data is a list of tensors --> need to do pre-processing
feat_base_source = input_source.view(-1, input_source.size()[-1]) # e.g. 256 x 25 x 2048 --> 6400 x 2048
feat_base_target = input_target.view(-1, input_target.size()[-1]) # e.g. 256 x 25 x 2048 --> 6400 x 2048
#=== shared layers ===#
# need to separate BN for source & target ==> otherwise easy to overfit to source data
if self.add_fc < 1:
raise ValueError(Back.RED + 'not enough fc layer')
feat_fc_source = self.fc_feature_shared_source(feat_base_source)
feat_fc_target = self.fc_feature_shared_target(feat_base_target) if self.share_params == 'N' else self.fc_feature_shared_source(feat_base_target)
# adaptive BN
if self.use_bn != 'none':
feat_fc_source, feat_fc_target = self.domainAlign(feat_fc_source, feat_fc_target, is_train, 'shared', self.alpha.item(), num_segments, 1)
feat_fc_source = self.relu(feat_fc_source)
feat_fc_target = self.relu(feat_fc_target)
feat_fc_source = self.dropout_i(feat_fc_source)
feat_fc_target = self.dropout_i(feat_fc_target)
# feat_fc = self.dropout_i(feat_fc)
feat_all_source.append(feat_fc_source.view((batch_source, num_segments) + feat_fc_source.size()[-1:])) # reshape ==> 1st dim is the batch size
feat_all_target.append(feat_fc_target.view((batch_target, num_segments) + feat_fc_target.size()[-1:]))
if self.add_fc > 1:
feat_fc_source = self.fc_feature_shared_2_source(feat_fc_source)
feat_fc_target = self.fc_feature_shared_2_target(feat_fc_target) if self.share_params == 'N' else self.fc_feature_shared_2_source(feat_fc_target)
feat_fc_source = self.relu(feat_fc_source)
feat_fc_target = self.relu(feat_fc_target)
feat_fc_source = self.dropout_i(feat_fc_source)
feat_fc_target = self.dropout_i(feat_fc_target)
feat_all_source.append(feat_fc_source.view((batch_source, num_segments) + feat_fc_source.size()[-1:])) # reshape ==> 1st dim is the batch size
feat_all_target.append(feat_fc_target.view((batch_target, num_segments) + feat_fc_target.size()[-1:]))
if self.add_fc > 2:
feat_fc_source = self.fc_feature_shared_3_source(feat_fc_source)
feat_fc_target = self.fc_feature_shared_3_target(feat_fc_target) if self.share_params == 'N' else self.fc_feature_shared_3_source(feat_fc_target)
feat_fc_source = self.relu(feat_fc_source)
feat_fc_target = self.relu(feat_fc_target)
feat_fc_source = self.dropout_i(feat_fc_source)
feat_fc_target = self.dropout_i(feat_fc_target)
feat_all_source.append(feat_fc_source.view((batch_source, num_segments) + feat_fc_source.size()[-1:])) # reshape ==> 1st dim is the batch size
feat_all_target.append(feat_fc_target.view((batch_target, num_segments) + feat_fc_target.size()[-1:]))
if self.use_attn_frame != 'none': # attend the frame-level features only
feat_fc_source = self.get_attn_feat_frame(feat_fc_source, pred_fc_domain_frame_source)
feat_fc_target = self.get_attn_feat_frame(feat_fc_target, pred_fc_domain_frame_target)
#=== source layers (frame-level) ===#
pred_fc_source = self.fc_classifier_source(feat_fc_source)
pred_fc_target = self.fc_classifier_target(feat_fc_target) if self.share_params == 'N' else self.fc_classifier_source(feat_fc_target)
### aggregate the frame-based features to video-based features ###
if 'tranrd' in self.frame_aggregation:
feat_fc_video_source = feat_fc_source.view((-1, num_segments) + feat_fc_source.size()[-1:]) # reshape based on the segments (e.g. 640x512 --> 128x5x512)
feat_fc_video_target = feat_fc_target.view((-1, num_segments) + feat_fc_target.size()[-1:]) # reshape based on the segments (e.g. 640x512 --> 128x5x512)
feat_fc_video_relation_source = self.TRANRD(feat_fc_video_source, is_train) # 128x5x512 --> 128x5x256 (256-dim. relation feature vectors x 5)
feat_fc_video_relation_target = self.TRANRD(feat_fc_video_target, is_train)
# transferable attention
attn_relation_source = feat_fc_video_relation_source[:,:,0] # assign random tensors to attention values to avoid runtime error
attn_relation_target = feat_fc_video_relation_target[:,:,0] # assign random tensors to attention values to avoid runtime error
# sum up relation features (ignore 1-relation)
feat_fc_video_source = torch.sum(feat_fc_video_relation_source, 1)
feat_fc_video_target = torch.sum(feat_fc_video_relation_target, 1)
if self.baseline_type == 'video':
feat_all_source.append(feat_fc_video_source.view((batch_source,) + feat_fc_video_source.size()[-1:]))
feat_all_target.append(feat_fc_video_target.view((batch_target,) + feat_fc_video_target.size()[-1:]))
#=== source layers (video-level) ===#
feat_fc_video_source = self.dropout_v(feat_fc_video_source)
feat_fc_video_target = self.dropout_v(feat_fc_video_target)
if reverse:
feat_fc_video_source = GradReverse.apply(feat_fc_video_source, mu)
feat_fc_video_target = GradReverse.apply(feat_fc_video_target, mu)
pred_fc_video_source = self.fc_classifier_video_source(feat_fc_video_source)
pred_fc_video_target = self.fc_classifier_video_target(feat_fc_video_target) if self.share_params == 'N' else self.fc_classifier_video_source(feat_fc_video_target)
if self.baseline_type == 'video': # only store the prediction from classifier 1 (for now)
feat_all_source.append(pred_fc_video_source.view((batch_source,) + pred_fc_video_source.size()[-1:]))
feat_all_target.append(pred_fc_video_target.view((batch_target,) + pred_fc_video_target.size()[-1:]))
#=== final output ===#
output_source = self.final_output(pred_fc_source, pred_fc_video_source, num_segments) # select output from frame or video prediction
output_target = self.final_output(pred_fc_target, pred_fc_video_target, num_segments)
output_source_2 = output_source
output_target_2 = output_target
return attn_relation_source, output_source, output_source_2, pred_domain_all_source, feat_all_source[::-1], attn_relation_target, output_target, output_target_2, pred_domain_all_target[::-1], feat_all_target[::-1] # reverse the order of feature list due to some multi-gpu issues