-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdisplay.py
85 lines (72 loc) · 3.25 KB
/
display.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import gymnasium as gym
from config.config import Config
import argparse
import numpy as np
import torch
import logging
from logger.logger import Logger
from utils.tools import *
import time
import sys, os
sys.path.append(".")
from runner.multi_evo_agent_runner import MultiEvoAgentRunner
from runner.multi_agent_runner import MultiAgentRunner
from runner.selfplay_agent_runner import SPAgentRunner
def main():
# ----------------------------------------------------------------------------#
# Load config options from terminal and predefined yaml file
# ----------------------------------------------------------------------------#
parser = argparse.ArgumentParser(description="User's arguments from terminal.")
parser.add_argument("--cfg",
dest="cfg",
help="run directory and cfg",
required=True,
type=str)
parser.add_argument('--ckpt_dir', type=str, default=None)
parser.add_argument('--ckpt', type=str, default='best')
args = parser.parse_args()
# Load config file
args.run_dir = os.path.split(args.cfg)[0] + '/'
cfg_file = args.cfg
cfg = Config(cfg_file)
# ----------------------------------------------------------------------------#
# Define logger and create dirs
# ----------------------------------------------------------------------------#
# set logger
logger = Logger(name='current', args=args, cfg=cfg)
logger.propagate = False
logger.setLevel(logging.INFO)
# set output
logger.set_output_handler()
logger.print_system_info()
# only training generates log file
logger.critical('Type of current running: Evaluation. No log file will be created')
# redefine dir
logger.run_dir = args.run_dir
logger.model_dir = '%smodels' % logger.run_dir
logger.log_dir = '%slog' % logger.run_dir
logger.tb_dir = '%stb' % logger.run_dir
ckpt = [int(args.ckpt) if args.ckpt.isdigit() else args.ckpt] * 2
# ----------------------------------------------------------------------------#
# Set torch and random seed
# ----------------------------------------------------------------------------#
dtype = torch.float64
torch.set_default_dtype(dtype)
device = torch.device('cpu')
np.random.seed(cfg.seed)
torch.manual_seed(cfg.seed)
# ----------------------------------------------------------------------------#
# Evaluation
# ----------------------------------------------------------------------------#
# runner definition
# runner = MultiEvoAgentRunner(cfg, logger, dtype, device,
# num_threads=args.num_threads, training=False)
if cfg.runner_type == "multi-agent-runner":
runner = MultiAgentRunner(cfg, logger, dtype, device, training=False, ckpt_dir=args.ckpt_dir, ckpt=ckpt)
elif cfg.runner_type == "selfplay-agent-runner":
runner = SPAgentRunner(cfg, logger, dtype, device, training=False, ckpt_dir=args.ckpt_dir, ckpt=ckpt)
elif cfg.runner_type == "multi-evo-agent-runner":
runner = MultiEvoAgentRunner(cfg, logger, dtype, device, training=False, ckpt_dir=args.ckpt_dir, ckpt=ckpt)
runner.display(num_episode=50, mean_action=True)
if __name__ == "__main__":
main()