forked from MVIG-SJTU/AlphaPose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tracker-general.py
226 lines (192 loc) · 10.6 KB
/
tracker-general.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# coding: utf-8
'''
File: tracker-general.py
Project: AlphaPose
File Created: Tuesday, 18st Dec 2018 14:55:41 pm
-----
Last Modified: Thursday, 20st Dec 2018 23:24:47 pm
Modified By: Yuliang Xiu ([email protected]>)
-----
Author: Yuliang Xiu ([email protected])
Copyright 2018 - 2018 Shanghai Jiao Tong University, Machine Vision and Intelligence Group
'''
import numpy as np
import os
import json
import copy
import heapq
from munkres import Munkres, print_matrix
from PIL import Image
import matplotlib.pyplot as plt
from tqdm import tqdm
from utils import *
from matching import orb_matching
import argparse
# visualization
def display_pose(imgdir, visdir, tracked, cmap):
print("Start visualization...\n")
for imgname in tqdm(tracked.keys()):
img = Image.open(os.path.join(imgdir,imgname))
width, height = img.size
fig = plt.figure(figsize=(width/10,height/10),dpi=10)
plt.imshow(img)
for pid in range(len(tracked[imgname])):
pose = np.array(tracked[imgname][pid]['keypoints']).reshape(-1,3)[:,:3]
tracked_id = tracked[imgname][pid]['idx']
# keypoint scores of torch version and pytorch version are different
if np.mean(pose[:,2]) <1 :
alpha_ratio = 1.0
else:
alpha_ratio = 5.0
if pose.shape[0] == 16:
mpii_part_names = ['RAnkle','RKnee','RHip','LHip','LKnee','LAnkle','Pelv','Thrx','Neck','Head','RWrist','RElbow','RShoulder','LShoulder','LElbow','LWrist']
colors = ['m', 'b', 'b', 'r', 'r', 'b', 'b', 'r', 'r', 'm', 'm', 'm', 'r', 'r','b','b']
pairs = [[8,9],[11,12],[11,10],[2,1],[1,0],[13,14],[14,15],[3,4],[4,5],[8,7],[7,6],[6,2],[6,3],[8,12],[8,13]]
for idx_c, color in enumerate(colors):
plt.plot(np.clip(pose[idx_c,0],0,width), np.clip(pose[idx_c,1],0,height), marker='o',
color=color, ms=80/alpha_ratio*np.mean(pose[idx_c,2]), markerfacecolor=(1, 1, 0, 0.7/alpha_ratio*pose[idx_c,2]))
for idx in range(len(pairs)):
plt.plot(np.clip(pose[pairs[idx],0],0,width),np.clip(pose[pairs[idx],1],0,height), 'r-',
color=cmap(tracked_id), linewidth=60/alpha_ratio*np.mean(pose[pairs[idx],2]), alpha=0.6/alpha_ratio*np.mean(pose[pairs[idx],2]))
elif pose.shape[0] == 17:
coco_part_names = ['Nose','LEye','REye','LEar','REar','LShoulder','RShoulder','LElbow','RElbow','LWrist','RWrist','LHip','RHip','LKnee','RKnee','LAnkle','RAnkle']
colors = ['r', 'r', 'r', 'r', 'r', 'y', 'y', 'y', 'y', 'y', 'y', 'g', 'g', 'g','g','g','g']
pairs = [[0,1],[0,2],[1,3],[2,4],[5,6],[5,7],[7,9],[6,8],[8,10],[11,12],[11,13],[13,15],[12,14],[14,16],[6,12],[5,11]]
for idx_c, color in enumerate(colors):
plt.plot(np.clip(pose[idx_c,0],0,width), np.clip(pose[idx_c,1],0,height), marker='o',
color=color, ms=80/alpha_ratio*np.mean(pose[idx_c,2]), markerfacecolor=(1, 1, 0, 0.7/alpha_ratio*pose[idx_c,2]))
for idx in range(len(pairs)):
plt.plot(np.clip(pose[pairs[idx],0],0,width),np.clip(pose[pairs[idx],1],0,height),'r-',
color=cmap(tracked_id), linewidth=60/alpha_ratio*np.mean(pose[pairs[idx],2]), alpha=0.6/alpha_ratio*np.mean(pose[pairs[idx],2]))
plt.axis('off')
ax = plt.gca()
ax.set_xlim([0,width])
ax.set_ylim([height,0])
extent = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
if not os.path.exists(visdir):
os.mkdir(visdir)
fig.savefig(os.path.join(visdir,imgname.split()[0]+".png"), pad_inches = 0.0, bbox_inches=extent, dpi=13)
plt.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='FoseFlow Tracker')
parser.add_argument('--imgdir', type=str, required=True, help="Must input the images dir")
parser.add_argument('--in_json', type=str, required=True, help="result json predicted by AlphaPose")
parser.add_argument('--out_json', type=str, required=True, help="output path of tracked json")
parser.add_argument('--visdir', type=str, default="", help="visulization tracked results of video sequences")
parser.add_argument('--link', type=int, default=100)
parser.add_argument('--drop', type=float, default=2.0)
parser.add_argument('--num', type=int, default=7)
parser.add_argument('--mag', type=int, default=30)
parser.add_argument('--match', type=float, default=0.2)
args = parser.parse_args()
# super parameters
# 1. look-ahead LINK_LEN frames to find tracked human bbox
# 2. bbox_IoU(deepmatching), bbox_IoU(general), pose_IoU(deepmatching), pose_IoU(general), box1_score, box2_score
# 3. bbox_IoU(deepmatching), bbox_IoU(general), pose_IoU(deepmatching), pose_IoU(general), box1_score, box2_score(Non DeepMatching)
# 4. drop low-score(<DROP) keypoints
# 5. pick high-score(top NUM) keypoints when computing pose_IOU
# 6. box width/height around keypoint for computing pose IoU
# 7. match threshold in Hungarian Matching
link_len = args.link
weights = [1,2,1,2,0,0]
weights_fff = [0,1,0,1,0,0]
drop = args.drop
num = args.num
mag = args.mag
match_thres = args.match
notrack_json = args.in_json
tracked_json = args.out_json
image_dir = args.imgdir
vis_dir = args.visdir
# if json format is differnt from "alphapose-forvis.json" (pytorch version)
if "forvis" not in notrack_json:
results_forvis = {}
last_image_name = ' '
with open(notrack_json) as f:
results = json.load(f)
for i in xrange(len(results)):
imgpath = results[i]['image_id']
if last_image_name != imgpath:
results_forvis[imgpath] = []
results_forvis[imgpath].append({'keypoints':results[i]['keypoints'],'scores':results[i]['score']})
else:
results_forvis[imgpath].append({'keypoints':results[i]['keypoints'],'scores':results[i]['score']})
last_image_name = imgpath
notrack_json = os.path.join(os.path.dirname(notrack_json), "alphapose-results-forvis.json")
with open(notrack_json,'w') as json_file:
json_file.write(json.dumps(results_forvis))
notrack = {}
track = {}
num_persons = 0
# load json file without tracking information
print("Start loading json file...\n")
with open(notrack_json,'r') as f:
notrack = json.load(f)
for img_name in tqdm(sorted(notrack.keys())):
track[img_name] = {'num_boxes':len(notrack[img_name])}
for bid in range(len(notrack[img_name])):
track[img_name][bid+1] = {}
track[img_name][bid+1]['box_score'] = notrack[img_name][bid]['scores']
track[img_name][bid+1]['box_pos'] = get_box(notrack[img_name][bid]['keypoints'], os.path.join(image_dir,img_name))
track[img_name][bid+1]['box_pose_pos'] = np.array(notrack[img_name][bid]['keypoints']).reshape(-1,3)[:,0:2]
track[img_name][bid+1]['box_pose_score'] = np.array(notrack[img_name][bid]['keypoints']).reshape(-1,3)[:,-1]
np.save('notrack-bl.npy',track)
# track = np.load('notrack-bl.npy').item()
# tracking process
max_pid_id = 0
frame_list = sorted(list(track.keys()))
print("Start pose tracking...\n")
for idx, frame_name in enumerate(tqdm(frame_list[:-1])):
frame_new_pids = []
frame_id = frame_name.split(".")[0]
next_frame_name = frame_list[idx+1]
next_frame_id = next_frame_name.split(".")[0]
# init tracking info of the first frame in one video
if idx == 0:
for pid in range(1, track[frame_name]['num_boxes']+1):
track[frame_name][pid]['new_pid'] = pid
track[frame_name][pid]['match_score'] = 0
max_pid_id = max(max_pid_id, track[frame_name]['num_boxes'])
cor_file = os.path.join(image_dir, "".join([frame_id, '_', next_frame_id, '_orb.txt']))
# regenerate the missed pair-matching txt
if not os.path.exists(cor_file) or os.stat(cor_file).st_size<200:
img1_path = os.path.join(image_dir, frame_name)
img2_path = os.path.join(image_dir, next_frame_name)
orb_matching(img1_path,img2_path, image_dir, frame_id, next_frame_id)
all_cors = np.loadtxt(cor_file)
# if there is no people in this frame, then copy the info from former frame
if track[next_frame_name]['num_boxes'] == 0:
track[next_frame_name] = copy.deepcopy(track[frame_name])
continue
cur_all_pids, cur_all_pids_fff = stack_all_pids(track, frame_list[:-1], idx, max_pid_id, link_len)
match_indexes, match_scores = best_matching_hungarian(
all_cors, cur_all_pids, cur_all_pids_fff, track[next_frame_name], weights, weights_fff, num, mag)
for pid1, pid2 in match_indexes:
if match_scores[pid1][pid2] > match_thres:
track[next_frame_name][pid2+1]['new_pid'] = cur_all_pids[pid1]['new_pid']
max_pid_id = max(max_pid_id, track[next_frame_name][pid2+1]['new_pid'])
track[next_frame_name][pid2+1]['match_score'] = match_scores[pid1][pid2]
# add the untracked new person
for next_pid in range(1, track[next_frame_name]['num_boxes'] + 1):
if 'new_pid' not in track[next_frame_name][next_pid]:
max_pid_id += 1
track[next_frame_name][next_pid]['new_pid'] = max_pid_id
track[next_frame_name][next_pid]['match_score'] = 0
np.save('track-bl.npy',track)
# track = np.load('track-bl.npy').item()
# calculate number of people
num_persons = 0
for fid, frame_name in enumerate(frame_list):
for pid in range(1, track[frame_name]['num_boxes']+1):
num_persons = max(num_persons, track[frame_name][pid]['new_pid'])
print("This video contains %d people."%(num_persons))
# export tracking result into notrack json files
print("Export tracking results to json...\n")
for fid, frame_name in enumerate(tqdm(frame_list)):
for pid in range(track[frame_name]['num_boxes']):
notrack[frame_name][pid]['idx'] = track[frame_name][pid+1]['new_pid']
with open(tracked_json,'w') as json_file:
json_file.write(json.dumps(notrack))
if len(args.visdir)>0:
cmap = plt.cm.get_cmap("hsv", num_persons)
display_pose(image_dir, vis_dir, notrack, cmap)