diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml index 0488b8a..e13a2af 100644 --- a/.github/workflows/CI.yml +++ b/.github/workflows/CI.yml @@ -1,15 +1,13 @@ name: CI +env: + CODECOV_TOKEN: 'b04186a9-0742-481a-be3e-e7457120db3f' on: - pull_request: - branches: - - master - - dev push: - branches: - - master - - dev - tags: '*' + branches: "dev" + tags: ["*"] + pull_request: + release: jobs: test: @@ -45,5 +43,10 @@ jobs: ${{ runner.os }}-test-${{ env.cache-name }}- ${{ runner.os }}-test- ${{ runner.os }}- - - uses: julia-actions/julia-buildpkg@v1 - - uses: julia-actions/julia-runtest@v1 + - uses: julia-actions/julia-buildpkg@latest + - uses: julia-actions/julia-runtest@latest + - uses: julia-actions/julia-uploadcodecov@v0.1 + continue-on-error: true + - uses: julia-actions/julia-uploadcoveralls@v0.1 + continue-on-error: true + diff --git a/README.md b/README.md new file mode 100644 index 0000000..8c918d6 --- /dev/null +++ b/README.md @@ -0,0 +1,49 @@ +# MLJEnsembles.jl + +[![Build status](https://github.com/JuliaAI/MLJEnsembles.jl/workflows/CI/badge.svg)](https://github.com/JuliaAI/MLJEnsembles.jl/actions) [![codecov.io](http://codecov.io/github/JuliaAI/MLJEnsembles.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaAI/MLJEnsembles.jl?branch=master) + +A package to create bagged homogeneous ensembles of +machine learning models using the +[MLJ](https://alan-turing-institute.github.io/MLJ.jl/dev/) machine +learning framework. + +For combining models in more general ways, see the [Composing +Models](https://alan-turing-institute.github.io/MLJ.jl/dev/composing_models/#Composing-Models) +section of the MLJ manual. + + +## Installation + +No installation is necessary when using MLJ, which is installed like this: + +```julia +using Pkg +Pkg.add("MLJ")\ +using MLJ +``` + +Alternatively, for a "minimal" installation: + +```julia +using Pkg +Pkg.add("MLJBase") +Pkg.add("MLJEnsembles") +using MLJBase, MLJEnsembles +``` + +In this case you will also need to load code defining an atomic model +to ensemble. The easiest way to do this is run `Pkg.add("MLJModels"); +using MLJModels` and use the `@load` macro. See the [Loading Model +Code](https://alan-turing-institute.github.io/MLJ.jl/dev/loading_model_code/) +of the MLJ manual for this and other possibilities. + + +## Sample usage + +See [Data Science Tutorials](https://alan-turing-institute.github.io/DataScienceTutorials.jl/getting-started/ensembles/). + + +## Documentation + +See the [MLJ manual](https://alan-turing-institute.github.io/MLJ.jl/dev/homogeneous_ensembles/#Homogeneous-Ensembles). +