-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclusters_data_analysis_functions.R
314 lines (272 loc) · 13.8 KB
/
clusters_data_analysis_functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#Cluster data analysis functions
#Get_Range_Matrix function
#Takes 4 values for its extremes (a vector with 4 elements)
#And the dimensions (number cell/columns)
#and interpolates between them.
Get_Range_Matrix <- function(coords,dims) {
mat <- matrix(NA,dims,dims)
mat[dims,] <- seq(coords[2],coords[4],length.out = dims)
mat[1,] <- seq(coords[1],coords[3],length.out = dims)
mat[,1] <- seq(coords[1],coords[2],length.out = dims)
mat[,dims] <- seq(coords[3],coords[4],length.out = dims)
for (i in 2:(ncol(mat)-1)) {
mat[i,] <- seq(mat[i,1],mat[i,dims],length.out=dims)
}
#mat <- mat/255
return(mat/255)
}
#Get_RGB_Values function
#Takes a list with 3 elements with RGB scores,
#and dims (number of rows in the square matrix)
#and returns a matrix with RGBs in each cell.
Get_RGB_values <- function(colours,dims) {
d <- dims
#Extract out_scores
r_scores <- sapply(colours,function(x){return(x[[1]])})
g_scores <- sapply(colours,function(x){return(x[[2]])})
b_scores <- sapply(colours,function(x){return(x[[3]])})
my_mats <- lapply(list(r_scores,g_scores,b_scores),
Get_Range_Matrix,dims=d)
names(my_mats) <- c("red","green","blue")
#Put them in Out_mat
out_mat <- matrix(NA,dims,dims)
for (i in 1:dims) {
for (j in 1:dims) {
value <- c(my_mats$red[i,j],my_mats$green[i,j],
my_mats$blue[i,j])
out_mat[i,j] <- rgb(value[1],value[2],value[3])
}
}
return(out_mat)
}
#Get_Sector_Mapping_Df returns a df with the
#right data for mapping. It takes
#the number of quantiles we want to consider.
#Function from hell
Get_Sector_Mapping_Df <- function(qs,
cols=colours,
lowest_alpha=0.4) {
#Get colour matrix
palette_2_vars <- Get_RGB_values(cols,dims=qs)
#Get Alpha matrix
alpha_values <- Get_Alphas(lowest=lowest_alpha,
dims=qs)
#Get DF
output_df <- ldply(
split(ttwa_ci_data_mapping,
ttwa_ci_data_mapping$industry.short),
function(x){
#First extract the colours
x_wide <- x %>%
select(ttwa.name,industry.short,metric,value,
variable,
var_type) %>%
droplevels() %>%
dcast(ttwa.name+industry.short~metric+variable+var_type)
#Outputs df where we add outputs for plotting
x_outs <- x_wide %>% select(ttwa.name,industry.short)
#Extract quartiles
x_outs[,c("bc_q","emp_q")] <-
lapply(x_wide[,c("business_lq_second.period_lq",
"emp_lq_second.period_lq")],
function(x){
q <- cut(x,
breaks=quantile(x,
probs=seq(0,1,length.out = qs),
na.rm=T),
labels=FALSE)
q[is.na(q)] <- min(q)
return(q)
})
#Extract colours
x_outs[,"colour_sp"] <-
apply(x_outs[,c("bc_q","emp_q")],1,
function(x){
rind <- as.numeric(x[[1]])
cind <- as.numeric(x[[2]])
return(palette_2_vars[rind,cind])
})
#Alphas
x_outs[,c("bc_t_q","emp_t_q")] <-
lapply(x_wide[,c("business.count_second.period_total",
"employment_second.period_total")],
function(x){
q <- cut(x,
breaks=quantile(x,
probs=seq(0,1,length.out = qs),
na.rm=T),
labels=FALSE)
q[is.na(q)] <- min(q)
return(q)
})
x_outs[,c("alpha_sp")] <-
apply(x_outs[,c("bc_t_q","emp_t_q")],1,
function(x){
if (is.na(x[[1]])==TRUE |
is.na(x[[2]])==TRUE) {
rind=1
cind=1
}
else {
rind <- as.numeric(x[[1]])
cind <- as.numeric(x[[2]])
}
return(alpha_values[rind,cind])
})
#Extract quartiles for change
x_outs[,c("bc_q_c","emp_q_c")] <-
lapply(x_wide[,c("business_lq_change_lq",
"emp_lq_change_lq")],
function(x){
q <- cut(x,
breaks=quantile(x,
probs=seq(0,1,length.out = qs),
na.rm=T),
labels=FALSE)
q[is.na(q)] <- min(q)
return(q)
})
#Extract colours (change)
x_outs[,"colour_ch"] <-
apply(x_outs[,c("bc_q_c","emp_q_c")],1,
function(x){
rind <- as.numeric(x[[1]])
cind <- as.numeric(x[[2]])
return(palette_2_vars[rind,cind])
})
#Extract alphas (change)
x_outs[,c("bc_t_q_ch","emp_t_q_ch")] <-
lapply(x_wide[,c("business.count_first.period_total",
"employment_first.period_total")],
function(x){
q <- cut(x,
breaks=quantile(x,
probs=seq(0,1,length.out = qs),
na.rm=T),
labels=FALSE)
q[is.na(q)] <- min(q)
return(q)
})
x_outs[,c("alpha_ch")] <-
apply(x_outs[,c("bc_t_q_ch","emp_t_q_ch")],1,
function(x){
if (is.na(x[[1]])==TRUE |
is.na(x[[2]])==TRUE) {
rind=1
cind=1
}
else {
rind <- as.numeric(x[[1]])
cind <- as.numeric(x[[2]])
}
return(alpha_values[rind,cind])
})
return(x_outs)
},.id=NULL)
#Get labels
top_areas <- lapply(split(ttwa_ci_data_mapping,
ttwa_ci_data_mapping$industry.short),
function(x){
#Get wide df for sorting
x_wide <- x %>%
select(ttwa.name,industry.short,metric,value,
variable,
var_type) %>%
droplevels() %>%
dcast(ttwa.name+industry.short~metric+variable+var_type)
#Extract top activity areas
top_areas <- lapply(
as.list(c(list(c("business_lq_second.period_lq",
"business.count_second.period_total")),
list(c("emp_lq_second.period_lq",
"employment_second.period_total")),
list(c("business_lq_change_lq",
"business.count_first.period_total")),
list(c("emp_lq_change_lq",
"employment_first.period_total")))),
function(x){
size_control <- x[[2]]
ranker <- x[[1]]
big <- x_wide[,size_control] >=
quantile(x_wide[,size_control],
na.rm=T)[[4]]
labels_df <- x_wide[big,]
labels_df_orf <- labels_df[order(labels_df[,ranker],
decreasing=T),]
labels <- labels_df_orf[1:5,"ttwa.name"]
return(labels)
})
names(top_areas) <- c("bc_sp","emp_sp","bc_c","emp_c")
return(top_areas)
})
unique_top_areas <- lapply(top_areas,
function(x){
sp <- unique(c(as.character(x$bc_sp),
as.character(x$emp_sp)))
ch <- unique(c(as.character(x$bc_c),
as.character(x$emp_c)))
out <- list("sp"=sp,
"ch"=ch)
})
return(list(output_df,unique_top_areas,palette_2_vars))
}
#Make_Sector_Maps function
#Takes an industry and returns a map, just like that.
Make_Sector_Maps <- function(industry){
mapping_df <- plotting_objects[[1]] %>%
filter(industry.short==industry) %>%
select(ttwa.name,colour_sp,alpha_sp,colour_ch,alpha_ch)
mapping_df_list <- lapply(c("colour","alpha"),
function(x){
map_df <- mapping_df %>% select(ttwa.name,
contains(x)) %>%
melt(id.vars="ttwa.name") %>%
mutate(variable=ifelse(grepl("ch",variable)==TRUE,
"change","second_period"))
names(map_df)[grep("value",names(map_df))] <- x
return(map_df)
})
#Merge outputs
mapping_df_2 <- mapping_df_list[[1]] %>%
merge(mapping_df_list[[2]],by=c("ttwa.name","variable"))
#Reorder levels
mapping_df_2$variable <- factor(mapping_df_2$variable,
levels=c("second_period","change"))
levels(mapping_df_2$variable) <- c("Current concentration",
"Change between 2007 and 2014")
#Merge with the Shapefile df
mapping_polys <- merge(ttwa_shape,mapping_df_2,
by="ttwa.name") %>%
arrange(desc(order)) %>% tbl_df() %>%
rename(col=colour,
my_alpha=alpha)
#Get the labels.
labels_list <- plotting_objects[[2]][[industry]]
labels_df <- ldply(labels_list,
function(x){
return(data.frame(ttwa.name=x))
},.id="variable")
#Merge them with the centroids
cen_df <- merge(uk_cen,labels_df,by="ttwa.name")
cen_df$variable <- factor(cen_df$variable,
levels=c("sp","ch"))
levels(cen_df$variable) <- c("Current concentration",
"Change between 2007 and 2014")
map_plot <-ggplot(data=mapping_polys,
aes(x=long,y=lat,fill=col,group=group,
alpha=my_alpha))+
geom_polygon(colour="azure4",size=0.001)+
geom_label_repel(data=cen_df,aes(x=long,y=lat,group=NULL,
alpha=NULL,fill=NULL,
label=ttwa.name),
size=1.5,colour="black",
label.padding=unit(0.15,'lines'))+
scale_fill_identity()+
scale_alpha_continuous(guide="none")+
facet_grid(.~variable)+
labs(title=paste(
"Concentration and change in",industry," in the period 2007-2014"))+
#facet_grid(.~measure)+
map_theme
return(map_plot)
}