-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclusters_analysis.R
320 lines (261 loc) · 14 KB
/
clusters_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#Preliminary cluster analysis
#1st task: Identify similar sets of industries.
#Using locational correlation data (do industries tend to locate in the same places?)
#Using correlational data (do industries tend to employ people from the same
#occupations)
#Locational correlation.
#This is based on subsectors_ttwa
#Create a data.frame with columns for the variables we're interested in, and correlate.
loc_correlation_tmp1 <- subsectors_ttwa %>% filter(year == "2011_14",
industry != "All creative industries") %>%
select(industry,ttwa.name,business.count,employment, business_lq,emp_lq)
#Produce correlation matrices
loc_correlation_matrices <- lapply(list("business.count"="business.count",
"business_lq"="business_lq",
"employment"="employment",
"employment_lq"="emp_lq"), function(x){
my_df <- loc_correlation_tmp1 %>%
dcast(ttwa.name~industry,
value.var=x)
#print(pairs(my_df[,-1]))
cor_mat <- cor(my_df[,-1],
use="pairwise.complete.obs",
method = "pearson")
return(cor_mat)
})
#Produce some heatmaps (loop over names to title them)
pdf("final-report-figures/heatmaps.pdf",width=8,height=8)
names <- names(loc_correlation_matrices)
for (i in 1:length(loc_correlation_matrices)) {
hm <- heatmap(loc_correlation_matrices[[i]],main=names[i],
margins=c(20,20))
print(hm)
}
dev.off()
#Consistent with the idea of services vs content clusters.
#This didn't work
# #Produce matrix with coagglomeraton index based in Glaeser.
# #We need total levels of employment (get them from all.cis)
# total_activity_ttwa <- all.cis_ttwa %>%
# filter(year!="2007") %>%
# select(ttwa.name,year,
# business.count,business_local.share,
# employment,emp_local.share) %>%
# mutate(business_total = business.count/business_local.share,
# employment_total=employment/emp_local.share) %>%
# group_by(ttwa.name) %>%
# summarise(employment_total=mean(employment_total,na.rm=T),
# business.count_total=mean(business_total,na.rm=T)) %>%
# ungroup() %>%
# select(ttwa.name,contains("_total"))
#
# #Merge with the agglomeration index
# loc_coagglomeration_index <- subsectors_ttwa %>%
# filter(year=="2011_14",industry!="All creative industries") %>%
# select(ttwa.name,industry,business.count,employment) %>% droplevels() %>%
# merge(total_activity_ttwa,by="ttwa.name")
#
#
# coi_matrices <- lapply(list("business"="business.count",
# "employment"="employment"), function(x){
# #Create repository matrix
# sector_matrix <- matrix(data=NA,
# nrow=length(levels(loc_coagglomeration_index$industry)),
# ncol = length(levels(loc_coagglomeration_index$industry)))
# row.names(sector_matrix) <- levels(loc_coagglomeration_index$industry)
# colnames(sector_matrix) <- levels(loc_coagglomeration_index$industry)
#
# #Assign my Df
# #We need to calculate the share of total
# #activity represented by each area
# my_df <- loc_coagglomeration_index %>%
# select(ttwa.name,industry,contains(x))
#
# names(my_df)[length(names(my_df))] <- "total_act"
#
# my_df_wide <- dcast(my_df,ttwa.name+total_act~industry,
# value.var=x) %>%
# mutate(share_of_total=total_act/sum(total_act,na.rm=T))
#
# #Now for every combination of sectors,
# #calculate the index and assign it to the right cell in the matrix
# for (i in colnames(sector_matrix)) {
# for (j in row.names(sector_matrix)) {
# my_df_subset <-my_df_wide[,c(i,j,
# "total_act","share_of_total")]
#
# coi <- sum(
# (((my_df_subset[i]/sum(my_df_subset[i],na.rm=T)) -
# my_df_subset$share_of_total) *
# (
# (my_df_subset[j]/
# sum(my_df_subset[j],na.rm=T))-
# my_df_subset$share_of_total)),
# na.rm=T)/
# (1 - sum(my_df_subset$share_of_total^2,na.rm=T))
#
# sector_matrix[i,j] <- coi
# }
# }
# return(sector_matrix)
# })
#
# coi_matrices[1]
#
#
#
# pdf("final-report-figures/heatmaps_coi.pdf",width=8,height=8)
# names <- names(coi_matrices)
# for (i in 1:length(coi_matrices)) {
# hm <- heatmap(coi_matrices[[i]],main=names[i],
# margins=c(20,20))
# print(hm)
# }
# dev.off()
#Calculate occupational correlation between industries
#This is based on 2014 APS data.
#Get shares of jobs in all industries
jobs_share <- aps_2014 %>%
select(weight,soc4) %>%
group_by(soc4) %>% summarise(occ_jobs=sum(weight)) %>%
mutate(jobs_share_all=occ_jobs/sum(occ_jobs))
# ggplot(data=jobs_share,aes(x=as.factor(soc4),y=jobs_share_all)) +
# geom_bar(stat="identity")
#jobs_share %>% arrange(desc(jobs_share_all))
excluded_subsectors <- c("Crafts","Museums, galleries and libraries")
#Calculate job shares inside creative industries, and estimate LQs
occ_correlation_tmp1 <- aps_2014 %>% filter(!is.na(sic4_label) &
!(sic4_label %in% excluded_subsectors)) %>%
group_by(sic4_label,soc4) %>%
summarise(jobs_sector=sum(weight,na.rm=T)) %>%
mutate(jobs_prop=jobs_sector/sum(jobs_sector,na.rm=T)) %>%
ungroup() %>% left_join(jobs_share[,-2],by="soc4") %>%
mutate(jobs_lq=jobs_prop/jobs_share_all) %>% droplevels()
#Get Df and correlation matrix
occ_correlation_df <- occ_correlation_tmp1 %>% select(sic4_label,soc4,jobs_lq) %>%
dcast(soc4~sic4_label,value.var="jobs_lq")
#Remove occupations only employed by one CIs
occ_nas <- apply(occ_correlation_df,1,function(x){
tots <- sum(is.na(x))
value <- ifelse(tots>=6,FALSE,TRUE)
})
#Done
occ_correlation_df_clean <- occ_correlation_df[occ_nas,]
#Make missing values = NAs
occ_correlation_df_clean[is.na(occ_correlation_df_clean)] <- 0
#Correlation matrix!
occ_corr_matrix <- cor(log(occ_correlation_df_clean[,-1]+0.0001),method='pearson',
use='pairwise.complete.obs')
#pairs(occ_corr_matrix[,-1])
pdf("final-report-figures/occ_heatmap.pdf")
heatmap(occ_corr_matrix,main="occupations",margins=c(10,10))
dev.off()
#Interesting: when we look at occupations, the situation is quite different from
#co-location.
#Generate hierarchical clusters with occupational data
pdf("final-report-figures/dendrograms.pdf")
dendronames <- names(loc_correlation_matrices)
for (i in 1:length(loc_correlation_matrices)) {
d <- dist(loc_correlation_matrices[[i]],method="euclidean")
fit <- hclust(d,method="ward")
plot(fit,main=paste("Cluster dendrogram - ",dendronames[i]))
}
dev.off()
#Tasks:
#Generate metrics for our key variables:
#business and employment lqs
#along the 6 clusters we have identified.
#Select top locations in each of these groups.
#Code: extract the sectors from employment lq and business lq, create a new
#dataframe with those sectors, and re-calculate employment, business count,
#turnover, and their lqs.
#First extract the labels
#Business counts
business.lq_clusters <- loc_correlation_matrices$business_lq %>% dist(method="euclidean") %>%
hclust(method="ward") %>% cutree(h=1) %>% Make_keyed_frame()
business.lq_clusters$label <- NA
business.lq_clusters$label[business.lq_clusters$x==1] <- "district_services"
business.lq_clusters$label[business.lq_clusters$x==2] <- "district_architecture"
business.lq_clusters$label[business.lq_clusters$x==3] <- "district_content"
#Employment
emp.lq_clusters <- loc_correlation_matrices$employment_lq %>% dist(method="euclidean") %>%
hclust(method="ward") %>% cutree(h=1.4) %>% Make_keyed_frame()
emp.lq_clusters$label <- NA
emp.lq_clusters$label[emp.lq_clusters$x==1] <- "employment_services"
emp.lq_clusters$label[emp.lq_clusters$x==2] <- "employment_content"
emp.lq_clusters$label[emp.lq_clusters$x==3] <- "employment_publishing"
#Automate this process
#Input a variable, return a df with scores by location
#on that variable (in totals as well as LQs)
#This requires total levels of employment
total_activity_ttwa <- ttwa_all_industries %>%
rename(ttwa.code=ttwa.2011.code..last.ons.revision.feb.2016.) %>%
merge(ttwa_names,by.x="ttwa.code",by.y="TTWA11CD",all.x=T) %>%
filter(year>=2011) %>% rename(ttwa.name=TTWA11NM) %>%
group_by(ttwa.name) %>%
summarise(employment_total=mean(total.employment,na.rm=T),
business.count_total=mean(total.number.of.enterprises,na.rm=T))
# total_activity_ttwa <- all.cis_ttwa %>%
# filter(year!="2007") %>%
# select(ttwa.name,year,
# business.count,business_local.share,
# employment,emp_local.share) %>%
# mutate(business_total = business.count/business_local.share,
# employment_total=employment/emp_local.share) %>%
# group_by(ttwa.name) %>%
# summarise(employment_total=mean(employment_total,na.rm=T),
# business.count_total=mean(business_total,na.rm=T)) %>%
# ungroup() %>%
# select(ttwa.name,contains("_total"))
#Generate clustering scores
clustering_scores <- lapply(list(business.lq_clusters,
emp.lq_clusters), function(x) {
#Merge the subsector dataset with the labelled industries
subsector_labelled <- subsectors_ttwa %>%
filter(year=="2011_14") %>% merge(x,
by.x="industry",
by.y="names",
all.x=T)
my_metric <- ifelse(grepl("district",x$label[1])==TRUE,
"business.count","employment")
names(subsector_labelled)[grep(my_metric,names(subsector_labelled))] <-
"my_metric"
#We need to merge the subsector labelled dataframe with
#the totals. We select variables of interest based on my_metric
totals <- total_activity_ttwa %>% select_("ttwa.name",
paste0(my_metric,"_total"))
names(totals)[grep(my_metric,names(totals))] <- "my_metric_total"
#Merge with subsector data
subsector_labelled_w_totals <- subsector_labelled %>%
merge(totals,by.x="ttwa.name", by.y="ttwa.name")
#Generate outputs
output <- subsector_labelled_w_totals %>%
group_by(ttwa.name,label) %>%
summarise(metric=sum(my_metric,na.rm=T),
metric_total=sum(my_metric_total,na.rm=T))
#We need to split, apply combine to generate LQs
output_w_lq <- ldply(split(output, output$label), function(x){
x$metric_lq = (x$metric/sum(x$metric,na.rm=T))/
(x$metric_total/sum(x$metric_total,na.rm=T))
return(x)
})
return(output_w_lq)
})
#Get top clusters in each of these variables (for sense-checking)
top_clusters <- lapply(clustering_scores,function(x){
my_df <- x
top_scores <- lapply(split(x,x$label), function(y) {
threshold <- quantile(y$metric)[[4]]
rankings <- y %>% filter(metric>threshold) %>%
arrange(desc(metric)) %>%
extract(1:40,"ttwa.name") %>% as.data.frame()
#names(rankings) <- paste0("ttwa_name_",y)
return(rankings)
})
return(top_scores)
})
#Some checks: correlations between metrics.
combined_df <- do.call(rbind,clustering_scores) %>% dcast(ttwa.name~label,
value.var="metric_lq")
correlations <- cor(combined_df[,-1],use="pairwise.complete.obs")
WriteChart(heatmap(correlations,margins = c(20,20)),"final-report-figures/")