-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
347 lines (257 loc) · 12.5 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
from models import TransformerSTT
import csv
from torch.utils.data import DataLoader
from tqdm import tqdm
import random
import re
import json
import math
import shutil
import torch
import numpy as np
import os
import sys
global_scope = sys.modules[__name__]
import argparse
from glob import glob
from collections import OrderedDict
from texts import KOREAN_TOKENS, KOREAN_TABLE
from mel2samp_waveglow import Mel2SampWaveglow
import matplotlib.pyplot as plt
plt.rcParams["font.family"] = 'NanumGothic'
import jamotools
import torch.nn as nn
from tensorboardX import SummaryWriter
from prepare_batch import load_metadata, SpeakerTable, collate_function
CONFIGURATION_FILE='config.json'
with open(CONFIGURATION_FILE) as f:
data = f.read()
json_info = json.loads(data)
mel_config = json_info["mel_config"]
MEL2SAMPWAVEGLOW = Mel2SampWaveglow(**mel_config)
hp = json_info["hp"]
for key in hp:
setattr(global_scope, key, hp[key])
# print(f'{key} == {hp[key]}')
model_parameters = json_info["mp"]
# TRAIN_METADATA_FILE = 'metadata_train_clean.csv'
# TEST_METADATA_FILE = 'metadata_test_clean.csv'
TRAIN_METADATA_FILTERED_FILE = 'metadata_train_clean_filtered.csv'
TEST_METADATA_FILTERED_FILE = 'metadata_test_clean_filtered.csv'
LEN_TRAIN = 736153
LEN_TEST = 14890
# SR = 22050
KOREAN_PATTERN = re.compile('[^ㄱ-ㅎ|ㅏ-ㅣ|가-힣| .,!?]')
def load_checkpoint(model, optimizer, path, map_location=None):
checkpoint_files = sorted(glob(os.path.join(path, '*.pt')))
assert len(checkpoint_files) > 0, f'No checkpoint inside {path}'
checkpoint_file = checkpoint_files[-1]
if map_location is not None:
# https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
checkpoint = torch.load(checkpoint_file, map_location=map_location)
if map_location == 'cpu':
new_model_checkpoint = OrderedDict()
for k, v in checkpoint['model_state_dict'].items():
key = k.replace('module.', '')
new_model_checkpoint[key] = v
checkpoint['model_state_dict'] = new_model_checkpoint
else:
checkpoint = torch.load(checkpoint_file)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
step = checkpoint['step']
return model, optimizer, step
def save_checkpoint(model, optimizer, step, path, keep_last_only=False):
checkpoint_name = os.path.join(path, f'checkpoint_{step:07d}.pt')
if keep_last_only:
checkpoint_name = os.path.join(path, 'checkpoint.pt')
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'step': step,
}, checkpoint_name)
return
def mel_tensor_to_plt_image(tensor, titles, step):
B, H, L = tensor.shape
x = 4
y = int(np.ceil(B / x))
fig, axes = plt.subplots(y, x, sharey=True, figsize=(36, 12))
fig.suptitle(f'Mel-spectrogram from Step #{step:07d}', fontsize=24, y=0.95)
axes = axes.flatten()
for i in range(B):
im = axes[i].imshow(tensor[i, :, :], origin='lower', aspect='auto')
im.set_clim(-1, 1)
axes[i].axes.xaxis.set_visible(False)
axes[i].axes.yaxis.set_visible(False)
title = jamotools.join_jamos(titles[i].replace('<s>', '').replace('</s>', ''))
axes[i].set_title(title)
fig.colorbar(im, ax=axes, location='right')
fig.canvas.draw()
image_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
image_array = image_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
image_array = np.swapaxes(image_array, 0, 2)
image_array = np.swapaxes(image_array, 1, 2)
plt.close()
return image_array
def resume_training(resume, model, optimizer, step, rank=0):
if resume is not None:
if resume == 'latest':
logging_folders = sorted(glob('runs/*'))
assert len(logging_folders) > 0, f'No folder exists inside ./runs'
logging_path = logging_folders[-1]
else:
logging_path = os.path.join('runs', resume)
else:
logging_path = ''
if os.path.isdir(logging_path):
summary_writer = SummaryWriter(logging_path)
map_location = {'cuda:%d' % 0: 'cuda:%d' % rank}
model, optimizer, step = load_checkpoint(model, optimizer, summary_writer.logdir, map_location)
else:
if rank == 0:
print(f'Logging path {logging_path} does not exist')
os.mkdir(logging_path)
summary_writer = SummaryWriter(logging_path)
shutil.copy('config.json', summary_writer.logdir)
else:
summary_writer = None
return model, optimizer, step, summary_writer
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('-resume', metavar='-r', type=str,
help='resume train', default=None)
args = parser.parse_args()
train_pairs = load_metadata(TRAIN_METADATA_FILTERED_FILE)
test_pairs = load_metadata(TEST_METADATA_FILTERED_FILE)
# (wav_file, clean_script, clean_jamos, tag, len(clean_script), len(clean_jamos), wav_file_dur)
speaker_table = SpeakerTable(set([pair[3] for pair in train_pairs] + [pair[3] for pair in test_pairs]))
print(len(speaker_table))
def is_valid(string):
# if string == 'kss':
# return True
if string in ['prosem_f', 'prosem_m', 'kss']:
return True
elif 'acriil' in string or 'clova' in string:
return True
else:
return False
# elif 'acriil' in string or 'clova' in string:
# return True
# else:
# return False
print(len(train_pairs), len(test_pairs))
train_pairs = list(filter(lambda x: is_valid(x[3]), train_pairs))
test_pairs = list(filter(lambda x: is_valid(x[3]), test_pairs))
train_pairs.sort()
test_pairs.sort()
print('>>>', len(train_pairs), len(test_pairs))
# dataset_train = DataLoader(train_pairs, batch_size=BATCH_SIZE,
# shuffle=True, num_workers=NUM_WORKERS,
# collate_fn=collate_function)
dataset_train = DataLoader(train_pairs, batch_size=BATCH_SIZE,
shuffle=False, num_workers=NUM_WORKERS,
collate_fn=collate_function)
dataset_test = DataLoader(test_pairs, batch_size=BATCH_SIZE,
shuffle=False, num_workers=NUM_WORKERS,
collate_fn=collate_function,
drop_last=True)
'''
DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,
batch_sampler=None, , collate_fn=None,
pin_memory=False, drop_last=False, timeout=0,
worker_init_fn=None, *, prefetch_factor=2,
persistent_workers=False)
'''
print(KOREAN_TOKENS)
cuda = torch.device('cuda')
model = TransformerSTT(**model_parameters)
model = nn.DataParallel(model)
model = model.cuda()
# print(str(model))
learning_rate = LR
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
loss_criterion = nn.CTCLoss(zero_infinity=True)
train_step = 0
model, optimizer, train_step, writer = resume_training(args.resume,
model,
optimizer,
train_step)
loss_list = list()
wer_list = list()
for epoch in range(NUM_EPOCH):
model.train()
for data in tqdm(dataset_train):
# print(data)
mel_tensor, jamo_code_tensor, mel_lengths, jamo_lengths, mel_transformer_mask, speakers = data
# print(jamo_code_tensor.shape)
decoded_result = KOREAN_TABLE.decode_jamo_code_tensor(jamo_code_tensor, no_pad=True)
# print(decoded_result)
speaker_code = speaker_table.speaker_name_to_code(speakers)
_speakers = speaker_table.code_to_speaker_name(speaker_code)
output_tensor = model((mel_tensor.to(cuda),
mel_transformer_mask.to(cuda),
))
output_tensor = output_tensor.permute(1, 0, 2) # (N, S, E) => (T, N, C)
loss = loss_criterion(output_tensor,
jamo_code_tensor.to(cuda),
(mel_lengths / 8).to(cuda),
jamo_lengths.to(cuda))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# print(f'{mel_tensor.shape} => {output_tensor.shape}')
# print(f'Loss = {loss.item()}')
decoded_input_text = KOREAN_TABLE.decode_jamo_code_tensor(jamo_code_tensor)
decoded_input_text = KOREAN_TABLE.decode_ctc_prediction(decoded_input_text)
decoded_output_text = KOREAN_TABLE.decode_jamo_prediction_tensor(output_tensor)
decoded_output_str = KOREAN_TABLE.decode_ctc_prediction(decoded_output_text)
wer = KOREAN_TABLE.caculate_wer(decoded_input_text, decoded_output_str)
wer_list.append(wer)
loss_list.append(loss.item())
train_step += 1
if len(loss_list) >= LOGGING_STEPS:
writer.add_scalar('ctc_loss/train', np.mean(loss_list), train_step)
decoded_pairs = [f'** {in_text} \n\n -> {out_text} \n\n => {final_output} \n\n' \
for (in_text, out_text, final_output) in zip(decoded_input_text, decoded_output_text, decoded_output_str)]
writer.add_text('text_result/train', '\n\n'.join(decoded_pairs), train_step)
writer.add_scalar('WER/train', np.mean(wer_list), train_step)
logging_image = mel_tensor_to_plt_image(mel_tensor, decoded_input_text, train_step)
writer.add_image('input_spectrogram/train', logging_image, train_step)
print(f'Train Step {train_step}')
# print(decoded_pairs)
# writer.add_text('text_result', '', train_step)
loss_list = list()
wer_list = list()
if train_step % CHECKPOINT_STEPS == 0:
save_checkpoint(model, optimizer, train_step, writer.logdir, KEEP_LAST_ONLY)
# break
loss_test_list = list()
wer_test_list = list()
model.eval()
for data in tqdm(dataset_test):
mel_tensor, jamo_code_tensor, mel_lengths, jamo_lengths, mel_transformer_mask, speakers = data
decoded_result = KOREAN_TABLE.decode_jamo_code_tensor(jamo_code_tensor, no_pad=True)
speaker_code = speaker_table.speaker_name_to_code(speakers)
_speakers = speaker_table.code_to_speaker_name(speaker_code)
output_tensor = model((mel_tensor.to(cuda),
mel_transformer_mask.to(cuda),
))
output_tensor = output_tensor.permute(1, 0, 2) # (N, S, E) => (T, N, C)
loss = loss_criterion(output_tensor,
jamo_code_tensor.to(cuda),
(mel_lengths / 8).to(cuda),
jamo_lengths.to(cuda))
loss_test_list.append(loss.item())
decoded_input_text = KOREAN_TABLE.decode_jamo_code_tensor(jamo_code_tensor)
decoded_input_text = KOREAN_TABLE.decode_ctc_prediction(decoded_input_text)
decoded_output_text = KOREAN_TABLE.decode_jamo_prediction_tensor(output_tensor)
decoded_output_str = KOREAN_TABLE.decode_ctc_prediction(decoded_output_text)
wer = KOREAN_TABLE.caculate_wer(decoded_input_text, decoded_output_str)
wer_test_list.append(wer)
decoded_pairs = [f'** {in_text} \n\n -> {out_text} \n\n => {final_output} \n\n' \
for (in_text, out_text, final_output) in zip(decoded_input_text, decoded_output_text, decoded_output_str)]
writer.add_scalar('ctc_loss/test', np.mean(loss_test_list), train_step)
writer.add_scalar('WER/test', np.mean(wer_test_list), train_step)
writer.add_text('text_result/test', '\n\n'.join(decoded_pairs), train_step)
logging_image = mel_tensor_to_plt_image(mel_tensor, decoded_input_text, train_step)
writer.add_image('input_spectrogram/test', logging_image, train_step)