-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_batch.py
572 lines (409 loc) · 18.7 KB
/
prepare_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
from models import TransformerSTT
import csv
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
import random
import re
import json
import math
import shutil
import scipy.io.wavfile as wavfile
import torch
import numpy as np
import os
import sys
global_scope = sys.modules[__name__]
import argparse
from glob import glob
from texts import KOREAN_TOKENS, KOREAN_TABLE
from mel2samp_waveglow import Mel2SampWaveglow
from torch.nn.utils.rnn import pad_sequence
import matplotlib.pyplot as plt
plt.rcParams["font.family"] = 'NanumGothic'
import jamotools
import torch.nn as nn
from tensorboardX import SummaryWriter
CONFIGURATION_FILE='config.json'
with open(CONFIGURATION_FILE) as f:
data = f.read()
json_info = json.loads(data)
mel_config = json_info["mel_config"]
MEL2SAMPWAVEGLOW = Mel2SampWaveglow(**mel_config)
hp = json_info["hp"]
for key in hp:
setattr(global_scope, key, hp[key])
print(f'{key} == {hp[key]}')
model_parameters = json_info["mp"]
# TRAIN_METADATA_FILE = 'metadata_train_clean.csv'
# TEST_METADATA_FILE = 'metadata_test_clean.csv'
TRAIN_METADATA_FILTERED_FILE = 'metadata_train_clean_filtered.csv'
TEST_METADATA_FILTERED_FILE = 'metadata_test_clean_filtered.csv'
LEN_TRAIN = 736153
LEN_TEST = 14890
# SR = 22050
KOREAN_PATTERN = re.compile('[^ㄱ-ㅎ|ㅏ-ㅣ|가-힣| .,!?]')
# NUM_WORKERS = 4
# # BATCH_SIZE = 8
# BATCH_SIZE = 12
# # BATCH_SIZE = 16
# # BATCH_SIZE = 32
# # BATCH_SIZE = 24
# # BATCH_SIZE = 48
# # BATCH_SIZE = 64
# MEL_MIN = -12
# NUM_EPOCH = 22
# NUM_EPOCH = 115
# NUM_EPOCH = 3 * 24 * 2
# # LR = 1e-5
# # LR = 5e-5
# # LR = 3e-5
# LR = 1e-5
# MASKING_RATIO = 0.1
# APPLY_SPECAUG = False
# APPLY_T_SHIFT = True
# CHECKPOINT_STEPS = 300000
class SpeakerTable():
def __init__(self, speakers):
self.speakers = sorted(speakers)
self.speakers_dict = {speaker: i for i, speaker in enumerate(self.speakers)}
def __get__(self, input_code):
if isinstance(input_code, str):
return self.speakers_dict[input_code]
elif isinstance(input_code, int):
return self.speakers[input_code]
else:
assert False, f'Wrong input code type for SpeakerTable {input_code}'
def __len__(self):
return len(self.speakers_dict)
# def __repr__(self):
# return str(self.speakers_dict)
def speaker_name_to_code(self, speakers):
return [self.speakers_dict[s] for s in speakers]
def code_to_speaker_name(self, speaker_code):
return [self.speakers[i] for i in speaker_code]
def load_metadata(meta_file_name, num_meta = 0):
print(f'Loading {meta_file_name}')
data_pairs = list()
with open(meta_file_name, 'r') as file:
csv_reader = csv.reader(file)
for line in tqdm(csv_reader, total=num_meta):
data_pairs.append(line)
print(random.choice(data_pairs))
return data_pairs
def korean_script_sanity_check(data_pairs):
invalid_num_list = list()
for i, pair in tqdm(enumerate(data_pairs)):
invalid_letters = KOREAN_PATTERN.findall(pair[1])
if len(invalid_letters) > 0:
# print(pair)
# print(invalid_letters)
invalid_num_list.append(i)
for i in reversed(invalid_num_list):
pop_data = data_pairs.pop(i)
print(f"Removed {pop_data}")
return data_pairs
# def get_self_attention_mask(valid_lengths):
# B = len (valid_lengths)
# max_len = max(valid_lengths)
# self_attention_mask = torch.ones(B, max_len, max_len) # (N, T / 8, T / 8)
# for i, length in enumerate(valid_lengths):
# self_attention_mask[i, :length, :length] = torch.zeros(length, length)
# return self_attention_mask.bool()
def load_checkpoint(model, optimizer, path):
checkpoint_files = sorted(glob(os.path.join(path, '*.pt')))
assert len(checkpoint_files) > 0, f'No checkpoint inside {path}'
checkpoint_file = checkpoint_files[-1]
checkpoint = torch.load(checkpoint_file)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
step = checkpoint['step']
return model, optimizer, step
def save_checkpoint(model, optimizer, step, path, keep_last_only=False):
checkpoint_name = os.path.join(path, f'checkpoint_{step:07d}.pt')
if keep_last_only:
checkpoint_name = os.path.join(path, 'checkpoint.pt')
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'step': step,
}, checkpoint_name)
return
def get_self_attention_key_padding_mask(valid_lengths):
B = len (valid_lengths)
max_len = max(valid_lengths)
self_attention_mask = torch.ones(B, max_len) # (N, T / 8)
for i, length in enumerate(valid_lengths):
self_attention_mask[i, :length] = torch.zeros(length)
return self_attention_mask.bool()
def random_masking(tensor, masking_ratio=0.1):
mask = torch.rand(tensor.shape) > masking_ratio
return torch.mul(tensor, mask)
def mel_random_masking(tensor, masking_ratio=0.1, mel_min=-12):
mask = torch.rand(tensor.shape) > masking_ratio
masked_tensor = torch.mul(tensor, mask)
masked_tensor += ~mask * mel_min
return masked_tensor
def apply_t_shift(tensor, mel_min=-12, T=10):
_, MF = tensor.shape
t = torch.randint(0, T, [1])
shift_tensor = torch.ones(t, MF) * mel_min
tensor = torch.cat((shift_tensor, tensor), axis=0)
return tensor
def spec_augment(tensor, mel_min=-12, T=10, F=8):
'''
Frequency masking is applied so that
f consecutive mel frequency channels [f0, f0 + f) are masked,
where f is first chosen from a uniform distribution
from 0 to the frequency mask parameter F, and f0 is chosen
from [0, ν − f). ν is the number of mel frequency channels.
Time masking is applied so that t consecutive time steps [t0, t0 + t)
are masked, where t is first chosen from a uniform distribution
from 0 to the time mask parameter T, and t0 is chosen from [0, τ − t).
'''
MT, MF = tensor.shape
t0 = torch.randint(0, MT - T, [1])
f0 = torch.randint(0, MF - F, [1])
t = torch.randint(0, T, [1])
f = torch.randint(0, F, [1])
tensor[t0:t0+t, :] = mel_min
tensor[:, f0:f0+f] = mel_min
return tensor
def normalize_tensor(tensor, min_v=-12, max_v=0):
center_v = (max_v - min_v) / 2
tensor = tensor / center_v + 1
return tensor
def collate_function(pairs):
mels = list()
tags = list()
jamo_tokens = list()
mel_lengths = list()
jamo_lengths = list()
B = len(pairs)
for pair in pairs:
# (wav_file, clean_script, clean_jamos, tag, len(clean_script), len(clean_jamos), wav_file_dur)
wav_file, _, clean_jamos, tag, _, _, _ = pair
jamo_token = torch.tensor(KOREAN_TABLE.jamo_to_jamo_code(clean_jamos, append_specials=True))
jamo_tokens.append(jamo_token)
tags.append(tag)
npy_file = wav_file.replace('.wav', '.npy')
if not os.path.isfile(npy_file) or not LOAD_MEL:
mel = MEL2SAMPWAVEGLOW.get_mel(wav_file).T # (MB, T) -> (T, MB)
if LOAD_MEL:
np.save(npy_file, mel.numpy()) # (T, MB)
else:
mel = torch.tensor(np.load(npy_file))
if APPLY_T_SHIFT:
mel = apply_t_shift(mel, MEL_MIN)
mel = mel_random_masking(mel, MASKING_RATIO, MEL_MIN)
if APPLY_SPECAUG:
mel = spec_augment(mel, MEL_MIN)
mel = normalize_tensor(mel, MEL_MIN)
mels.append(mel)
# print(len(jamo_token))
jamo_lengths.append(len(jamo_token))
mel_lengths.append(mel.shape[0])
jamo_tensor = pad_sequence(jamo_tokens, batch_first=True, padding_value=0) # (B, S)
# mel_tensor = pad_sequence(mels, batch_first=True, padding_value=MEL_MIN).transpose(1, 2) # (B, T, MB) -> (B, MB, T)
mel_tensor = pad_sequence(mels, batch_first=True, padding_value=-1).transpose(1, 2) # (B, T, MB) -> (B, MB, T)
mel_tensor = pad_tensor_to_multiple(mel_tensor, 8)
shrinked_mel_lengths = [int(np.ceil(mel_length / 8)) for mel_length in mel_lengths]
mel_lengths = torch.tensor(mel_lengths)
jamo_lengths = torch.tensor(jamo_lengths)
mel_transformer_mask = get_self_attention_key_padding_mask(shrinked_mel_lengths) # (N, T / 8, T / 8)
return mel_tensor, jamo_tensor, mel_lengths, jamo_lengths, mel_transformer_mask, tags
# (B, MB, T), (B, S), (N), (N), (N, T / 8, T / 8), (N)
def plot_mel_spectrograms(mel_tensor, keyword=''):
B, M, T = mel_tensor.shape
num_x = int(np.sqrt(B))
num_y = int(B / num_x)
fig, axes = plt.subplots(num_x, num_y, sharex=True, sharey=True, figsize=(24, 8), dpi=300)
axes = axes.flatten()
for i in range(B):
im = axes[i].imshow(mel_tensor[i, :, :], origin='lower', aspect='auto')
plt.tight_layout()
fig.subplots_adjust(right=0.94)
cbar_ax = fig.add_axes([0.96, 0.05, 0.02, 0.9])
fig.colorbar(im, cax=cbar_ax)
plt.savefig(f'mel_sample_{keyword}.png')
plt.close()
return
def get_next_multiple(input_length, divider):
return divider * math.ceil(input_length / divider)
def get_padding_length(input_length, divider):
return get_next_multiple(input_length, divider) - input_length
def pad_tensor_to_multiple(tensor, divider):
B, M, T = tensor.shape
pad_len = get_padding_length(T, divider)
tensor = torch.cat((tensor, torch.full((B, M, pad_len), fill_value=MEL_MIN)), dim=2)
return tensor
def mel_tensor_to_plt_image(tensor, titles, step):
B, H, L = tensor.shape
x = 4
y = int(np.ceil(B / x))
fig, axes = plt.subplots(y, x, sharey=True, figsize=(36, 12))
fig.suptitle(f'Mel-spectrogram from Step #{step:07d}', fontsize=24, y=0.95)
axes = axes.flatten()
for i in range(B):
im = axes[i].imshow(tensor[i, :, :], origin='lower', aspect='auto')
im.set_clim(-1, 1)
axes[i].axes.xaxis.set_visible(False)
axes[i].axes.yaxis.set_visible(False)
title = jamotools.join_jamos(titles[i].replace('<s>', '').replace('</s>', ''))
axes[i].set_title(title)
fig.colorbar(im, ax=axes, location='right')
fig.canvas.draw()
image_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
image_array = image_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
image_array = np.swapaxes(image_array, 0, 2)
image_array = np.swapaxes(image_array, 1, 2)
plt.close()
return image_array
def resume_training(resume, model, optimizer, step):
if resume is not None:
if resume == 'latest':
logging_folders = sorted(glob('runs/*'))
assert len(logging_folders) > 0, f'No folder exists inside ./runs'
logging_path = logging_folders[-1]
else:
logging_path = os.path.join('runs', args.resume)
assert os.path.isdir(logging_path), f'Invalid logging path {logging_path}'
summary_writer = SummaryWriter(logging_path)
model, optimizer, step = load_checkpoint(model, optimizer, summary_writer.logdir)
else:
summary_writer = SummaryWriter()
shutil.copy('config.json', summary_writer.logdir)
return model, optimizer, step, summary_writer
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('-resume', metavar='-r', type=str,
help='resume train', default=None)
args = parser.parse_args()
train_pairs = load_metadata(TRAIN_METADATA_FILTERED_FILE)
test_pairs = load_metadata(TEST_METADATA_FILTERED_FILE)
# (wav_file, clean_script, clean_jamos, tag, len(clean_script), len(clean_jamos), wav_file_dur)
speaker_table = SpeakerTable(set([pair[3] for pair in train_pairs] + [pair[3] for pair in test_pairs]))
print(len(speaker_table))
def is_valid(string):
# if string == 'kss':
# return True
if string in ['prosem_f', 'prosem_m', 'kss']:
return True
elif 'acriil' in string or 'clova' in string:
return True
else:
return False
# elif 'acriil' in string or 'clova' in string:
# return True
# else:
# return False
print(len(train_pairs), len(test_pairs))
train_pairs = list(filter(lambda x: is_valid(x[3]), train_pairs))
test_pairs = list(filter(lambda x: is_valid(x[3]), test_pairs))
print('>>>', len(train_pairs), len(test_pairs))
dataset_train = DataLoader(train_pairs, batch_size=BATCH_SIZE,
shuffle=True, num_workers=NUM_WORKERS,
collate_fn=collate_function)
dataset_test = DataLoader(test_pairs, batch_size=BATCH_SIZE,
shuffle=False, num_workers=NUM_WORKERS,
collate_fn=collate_function,
drop_last=True)
'''
DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,
batch_sampler=None, , collate_fn=None,
pin_memory=False, drop_last=False, timeout=0,
worker_init_fn=None, *, prefetch_factor=2,
persistent_workers=False)
'''
print(KOREAN_TOKENS)
cuda = torch.device('cuda')
model = TransformerSTT(**model_parameters)
model = nn.DataParallel(model)
model = model.cuda()
# print(str(model))
learning_rate = LR
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
loss_criterion = nn.CTCLoss(zero_infinity=True)
train_step = 0
model, optimizer, train_step, writer = resume_training(args.resume,
model,
optimizer,
train_step)
loss_list = list()
wer_list = list()
for epoch in range(NUM_EPOCH):
model.train()
for data in tqdm(dataset_train):
# print(data)
mel_tensor, jamo_code_tensor, mel_lengths, jamo_lengths, mel_transformer_mask, speakers = data
# print(jamo_code_tensor.shape)
decoded_result = KOREAN_TABLE.decode_jamo_code_tensor(jamo_code_tensor, no_pad=True)
# print(decoded_result)
speaker_code = speaker_table.speaker_name_to_code(speakers)
_speakers = speaker_table.code_to_speaker_name(speaker_code)
output_tensor = model((mel_tensor.to(cuda),
mel_transformer_mask.to(cuda),
))
output_tensor = output_tensor.permute(1, 0, 2) # (N, S, E) => (T, N, C)
loss = loss_criterion(output_tensor,
jamo_code_tensor.to(cuda),
(mel_lengths / 8).to(cuda),
jamo_lengths.to(cuda))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# print(f'{mel_tensor.shape} => {output_tensor.shape}')
# print(f'Loss = {loss.item()}')
decoded_input_text = KOREAN_TABLE.decode_jamo_code_tensor(jamo_code_tensor)
decoded_input_text = KOREAN_TABLE.decode_ctc_prediction(decoded_input_text)
decoded_output_text = KOREAN_TABLE.decode_jamo_prediction_tensor(output_tensor)
decoded_output_str = KOREAN_TABLE.decode_ctc_prediction(decoded_output_text)
wer = KOREAN_TABLE.caculate_wer(decoded_input_text, decoded_output_str)
wer_list.append(wer)
loss_list.append(loss.item())
train_step += 1
if len(loss_list) >= LOGGING_STEPS:
writer.add_scalar('ctc_loss/train', np.mean(loss_list), train_step)
decoded_pairs = [f'** {in_text} \n\n -> {out_text} \n\n => {final_output} \n\n' \
for (in_text, out_text, final_output) in zip(decoded_input_text, decoded_output_text, decoded_output_str)]
writer.add_text('text_result/train', '\n\n'.join(decoded_pairs), train_step)
writer.add_scalar('WER/train', np.mean(wer_list), train_step)
logging_image = mel_tensor_to_plt_image(mel_tensor, decoded_input_text, train_step)
writer.add_image('input_spectrogram/train', logging_image, train_step)
print(f'Train Step {train_step}')
# print(decoded_pairs)
# writer.add_text('text_result', '', train_step)
loss_list = list()
wer_list = list()
if train_step % CHECKPOINT_STEPS == 0:
save_checkpoint(model, optimizer, train_step, writer.logdir, KEEP_LAST_ONLY)
# break
loss_test_list = list()
wer_test_list = list()
model.eval()
for data in tqdm(dataset_test):
mel_tensor, jamo_code_tensor, mel_lengths, jamo_lengths, mel_transformer_mask, speakers = data
decoded_result = KOREAN_TABLE.decode_jamo_code_tensor(jamo_code_tensor, no_pad=True)
speaker_code = speaker_table.speaker_name_to_code(speakers)
_speakers = speaker_table.code_to_speaker_name(speaker_code)
output_tensor = model((mel_tensor.to(cuda),
mel_transformer_mask.to(cuda),
))
output_tensor = output_tensor.permute(1, 0, 2) # (N, S, E) => (T, N, C)
loss = loss_criterion(output_tensor,
jamo_code_tensor.to(cuda),
(mel_lengths / 8).to(cuda),
jamo_lengths.to(cuda))
loss_test_list.append(loss.item())
decoded_input_text = KOREAN_TABLE.decode_jamo_code_tensor(jamo_code_tensor)
decoded_input_text = KOREAN_TABLE.decode_ctc_prediction(decoded_input_text)
decoded_output_text = KOREAN_TABLE.decode_jamo_prediction_tensor(output_tensor)
decoded_output_str = KOREAN_TABLE.decode_ctc_prediction(decoded_output_text)
wer = KOREAN_TABLE.caculate_wer(decoded_input_text, decoded_output_str)
wer_test_list.append(wer)
decoded_pairs = [f'** {in_text} \n\n -> {out_text} \n\n => {final_output} \n\n' \
for (in_text, out_text, final_output) in zip(decoded_input_text, decoded_output_text, decoded_output_str)]
writer.add_scalar('ctc_loss/test', np.mean(loss_test_list), train_step)
writer.add_scalar('WER/test', np.mean(wer_test_list), train_step)
writer.add_text('text_result/test', '\n\n'.join(decoded_pairs), train_step)
logging_image = mel_tensor_to_plt_image(mel_tensor, decoded_input_text, train_step)
writer.add_image('input_spectrogram/test', logging_image, train_step)