-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathtest.py
69 lines (53 loc) · 1.92 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import datasets.custom_transforms as custom_transforms
from config import get_opts, get_training_size
from datasets.test_folder import TestSet
from losses.loss_functions import compute_errors
from SC_Depth import SC_Depth
from visualization import *
@torch.no_grad()
def main():
hparams = get_opts()
# initialize network
system = SC_Depth(hparams)
# load ckpts
system = system.load_from_checkpoint(hparams.ckpt_path, strict=False)
model = system.depth_net
model.cuda()
model.eval()
# get training resolution
training_size = get_training_size(hparams.dataset_name)
# data loader
test_transform = custom_transforms.Compose([
custom_transforms.RescaleTo(training_size),
custom_transforms.ArrayToTensor(),
custom_transforms.Normalize()]
)
test_dataset = TestSet(
hparams.dataset_dir,
transform=test_transform,
dataset=hparams.dataset_name
)
print('{} samples found in test scenes'.format(len(test_dataset)))
test_loader = DataLoader(test_dataset,
batch_size=1,
shuffle=False,
num_workers=4,
pin_memory=True
)
all_errs = []
for i, (tgt_img, gt_depth) in enumerate(tqdm(test_loader)):
pred_depth = model(tgt_img.cuda())
errs = compute_errors(gt_depth.cuda(), pred_depth,
hparams.dataset_name)
all_errs.append(np.array(errs))
all_errs = np.stack(all_errs)
mean_errs = np.mean(all_errs, axis=0)
print("\n " + ("{:>8} | " * 9).format("abs_diff", "abs_rel",
"sq_rel", "log10", "rmse", "rmse_log", "a1", "a2", "a3"))
print(("&{: 8.3f} " * 9).format(*mean_errs.tolist()) + "\\\\")
if __name__ == '__main__':
main()