-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_BREC.py
238 lines (187 loc) · 8.83 KB
/
train_BREC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch
import torch.nn as nn
import torch_geometric
from datasets.BRECDataset_no4v_60cfi import BRECDataset, part_dict, part_name
from models.input_encoder import EmbeddingEncoder
from models.model_construction import make_model
import train_utils
import time
from loguru import logger
from tqdm import tqdm
from torch_geometric.loader import DataLoader
import torch_geometric.transforms as T
def get_dataset(args):
time_start = time.process_time()
path, pre_transform, follow_batch = train_utils.data_setup(args)
path = path + "_" + str(args.onthefly)
def node_feature_transform(data):
if "x" not in data:
data.x = torch.ones([data.num_nodes, 1]).long()
return data
if args.onthefly:
dataset = BRECDataset(name=args.dataset_name,
root=path,
transform=train_utils.PostTransform(args.wo_node_feature,
args.wo_edge_feature),
test_part=args.test_part)
else:
dataset = BRECDataset(name=args.dataset_name,
root=path,
pre_transform=T.Compose([node_feature_transform, pre_transform]),
transform=train_utils.PostTransform(args.wo_node_feature,
args.wo_edge_feature),
test_part=args.test_part)
pre_transform = lambda x: x
time_end = time.process_time()
time_cost = round(time_end - time_start, 2)
logger.info(f"dataset construction time cost: {time_cost}")
return dataset, pre_transform, follow_batch
def get_model(args):
time_start = time.process_time()
init_encoder = EmbeddingEncoder(2, args.hidden_channels)
model = make_model(args, init_encoder)
time_end = time.process_time()
time_cost = round(time_end - time_start, 2)
logger.info(f"model construction time cost: {time_cost}")
return model
def evaluation(run, dataset, model, args, device, pre_transform, follow_batch):
def T2_calculation(dataset, log_flag=False):
with torch.no_grad():
loader = DataLoader(dataset, batch_size=args.batch_size, follow_batch=follow_batch)
pred_0_list = []
pred_1_list = []
for data in loader:
pred = model(data.to(device)).detach()
pred_0_list.extend(pred[0::2])
pred_1_list.extend(pred[1::2])
X = torch.cat([x.reshape(1, -1) for x in pred_0_list], dim=0).T
Y = torch.cat([x.reshape(1, -1) for x in pred_1_list], dim=0).T
if log_flag:
logger.info(f"X_mean = {torch.mean(X, dim=1)}")
logger.info(f"Y_mean = {torch.mean(Y, dim=1)}")
D = X - Y
D_mean = torch.mean(D, dim=1).reshape(-1, 1)
S = torch.cov(D)
inv_S = torch.linalg.pinv(S)
return torch.mm(torch.mm(D_mean.T, inv_S), D_mean)
time_start = time.process_time()
cnt = 0
correct_list = []
fail_in_reliability = 0
loss_func = nn.CosineEmbeddingLoss(margin=args.MARGIN)
for i in args.test_part:
part = part_name[i]
part_range = part_dict[part]
logger.info(f"{part} part starting ---")
cnt_part = 0
fail_in_reliability_part = 0
start = time.process_time()
for id in tqdm(range(part_range[0], part_range[1])):
logger.info(f"ID: {id}")
optimizer = torch.optim.Adam(
model.parameters(), lr=args.lr, weight_decay=args.l2_wd
)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
dataset_traintest = [pre_transform(data) for data in dataset[
id * args.NUM_RELABEL * 2: (id + 1) * args.NUM_RELABEL * 2
]]
dataset_reliability = [pre_transform(data) for data in dataset[
(id + args.SAMPLE_NUM) * args.NUM_RELABEL * 2:
(id + args.SAMPLE_NUM + 1) * args.NUM_RELABEL * 2]]
model.reset_parameters()
model.train()
for _ in range(args.num_epochs):
traintest_loader = DataLoader(dataset_traintest,
batch_size=args.batch_size,
follow_batch=follow_batch)
loss_all = 0
for data in traintest_loader:
optimizer.zero_grad()
pred = model(data.to(device))
loss = loss_func(
pred[0::2],
pred[1::2],
torch.tensor([-1] * (len(pred) // 2)).to(device),
)
loss.backward()
optimizer.step()
loss_all += len(pred) / 2 * loss.item()
loss_all /= args.NUM_RELABEL
logger.info(f"Loss: {loss_all}")
if loss_all < args.LOSS_THRESHOLD:
logger.info("Early Stop Here")
break
scheduler.step(loss_all)
model.eval()
T_square_traintest = T2_calculation(dataset_traintest, True)
T_square_reliability = T2_calculation(dataset_reliability, True)
isomorphic_flag = False
reliability_flag = False
if T_square_traintest > args.THRESHOLD and not torch.isclose(
T_square_traintest, T_square_reliability, atol=args.EPSILON_CMP
):
isomorphic_flag = True
if T_square_reliability < args.THRESHOLD:
reliability_flag = True
if isomorphic_flag:
cnt += 1
cnt_part += 1
correct_list.append(id)
logger.info(f"Correct num in current part: {cnt_part}")
if not reliability_flag:
fail_in_reliability += 1
fail_in_reliability_part += 1
logger.info(f"isomorphic: {isomorphic_flag} {T_square_traintest}")
logger.info(f"reliability: {reliability_flag} {T_square_reliability}")
end = time.process_time()
time_cost_part = round(end - start, 2)
logger.info(
f"{part} part costs time {time_cost_part}; Correct in {cnt_part} / {part_range[1] - part_range[0]}"
)
logger.info(
f"Fail in reliability: {fail_in_reliability_part} / {part_range[1] - part_range[0]}"
)
time_end = time.process_time()
time_cost = round(time_end - time_start, 2)
logger.info(f"evaluation time cost: {time_cost}")
Acc = round(cnt / args.SAMPLE_NUM, 2)
logger.info(f"Correct in {cnt} / {args.SAMPLE_NUM}, Acc = {Acc}")
logger.info(f"Fail in reliability: {fail_in_reliability} / {args.SAMPLE_NUM}")
logger.info(correct_list)
logger.add(f"{args.save_dir}/{args.exp_name}/result_show.txt", format="{message}", encoding="utf-8")
logger.info(
"Real_correct\tCorrect\tFail\thops\tlayers"
)
logger.info(
f"{cnt-fail_in_reliability}\t{cnt}\t{fail_in_reliability}\t{args.num_hops}\t{args.num_layers}"
)
#TODO: Fit BREC dataset into pytorch_lightning framework.
def main():
parser = train_utils.args_setup()
parser.add_argument('--dataset_name', type=str, default="BREC", help='Name of dataset.')
parser.add_argument('--NUM_RELABEL', type=int, default=32)
parser.add_argument('--P_NORM', type=int, default=2)
parser.add_argument('--THRESHOLD', type=float, default=72.34)
parser.add_argument('--MARGIN', type=float, default=0.0)
parser.add_argument('--LOSS_THRESHOLD', type=float, default=0.2)
parser.add_argument('--EPSILON_MATRIX', type=float, default=1e-7)
parser.add_argument('--EPSILON_CMP', type=float, default=1e-6)
parser.add_argument('--runs', type=int, default=10, help='Number of repeat run.')
parser.add_argument('--test_part', type=list, default=range(5), help="A list of index to indicate which part to test.")
parser.add_argument('--onthefly', action="store_true", help="If true, process the data on the fly to save memory.")
args = parser.parse_args()
args = train_utils.update_args(args)
torch.backends.cudnn.deterministic = True
device = "cuda" if torch.cuda.is_available() else "cpu"
args.SAMPLE_NUM = sum([part_dict[part_name[i]][1]-part_dict[part_name[i]][0] for i in args.test_part])
# get dataset
dataset, pre_transform, follow_batch = get_dataset(args)
for run in range(args.runs):
seed = train_utils.get_seed(args.seed)
torch_geometric.seed_everything(seed)
# get model
model = get_model(args)
model.to(device)
evaluation(run + 1, dataset, model, args, device, pre_transform, follow_batch)
if __name__ == "__main__":
main()