-
Notifications
You must be signed in to change notification settings - Fork 0
/
solver_2OPT_localGA_input.py
243 lines (207 loc) · 9.48 KB
/
solver_2OPT_localGA_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from parse import read_input_file, write_output_file
import os
import random
import math
from exp_utils import get_logger
from Task import Task
import datetime
import numpy as np
import pickle
import time
from get_rank import get_rank
# random.seed(123)
work_dir = "./logs"
now = datetime.datetime.now()
logging = get_logger(os.path.join(work_dir, now.strftime('%Y-%m-%d %H:%M:%S') + ' log.txt'))
total_benefit = 0
total_start = time.time()
# Load optimal output
opt_dict = {}
if os.path.exists("optimum_output.pickle"):
with open("optimum_output.pickle", "rb") as f:
opt_dict = pickle.load(f)
def solve(tasks, input_path):
"""
Args:
tasks: list[Task], list of igloos to polish
Returns:
output: list of igloos in order of polishing
"""
############################################## CONFIG ##############################################
global opt_dict
MAX_TIME = 1440
opt = opt_dict.get(input_path, [None, float('-inf')])
best_plan = opt[0]
best_plan_benefit = opt[1]
temp_best_plan = []
temp_best_benefit = 0
####################################################################################################
epoch_idx = 0
same = 0
count = 0
def fitness(output_tasks, tasks):
assert len(output_tasks) == len(set(output_tasks)), "output_tasks contain duplicates!"
MAX_TIME = 1440
time_cum = 0
benefit_cum = 0
idx = 0
while idx < len(output_tasks) and time_cum + tasks[output_tasks[idx] - 1].duration <= MAX_TIME:
id = output_tasks[idx] - 1
time_cum = time_cum + tasks[id].duration
if time_cum <= tasks[id].deadline:
benefit_cum += tasks[id].perfect_benefit
else:
benefit_cum += tasks[id].perfect_benefit * math.exp(-0.0170 * (time_cum - tasks[id].deadline))
idx += 1
return benefit_cum
def postprocessing(output_tasks, tasks):
idx = 0
MAX_TIME = 1440
time_cum = 0
processed_output_taskId = []
while idx < len(output_tasks) and time_cum + tasks[output_tasks[idx] - 1].duration <= MAX_TIME:
id = output_tasks[idx] - 1
time_cum = time_cum + tasks[id].duration
processed_output_taskId.append(tasks[id].task_id)
idx += 1
return processed_output_taskId
############################## Initial Input ################################################
# curr_output_tasks = [i for i in range(1, len(tasks)+1)]
# random.shuffle(curr_output_tasks)
# tasks_greedy = sorted(tasks, key = lambda task: (round(-task.perfect_benefit / task.duration, 1), task.deadline))
# curr_output_tasks = [task.task_id for task in tasks_greedy]
output_tasks = []
remaining_tasks = tasks[:]
idx = 0
time_cum = 0
benefit_cum = 0
MAX_TIME = 1440
while remaining_tasks and time_cum <= MAX_TIME:
discounted_profit_tasks = []
remaining_tasks = [task for task in remaining_tasks if task.duration + time_cum <= MAX_TIME]
if not remaining_tasks:
break
for i in range(len(remaining_tasks)):
remaining_task = remaining_tasks[i]
if time_cum <= remaining_task.deadline:
benefit = remaining_task.perfect_benefit
else:
benefit = remaining_task.perfect_benefit * math.exp(-0.0170 * (time_cum - remaining_task.deadline))
discounted_profit_tasks.append(benefit)
max_discounted_profit = max(discounted_profit_tasks)
max_discounted_profit_taskId = discounted_profit_tasks.index(max_discounted_profit)
max_discounted_profit_task = remaining_tasks[max_discounted_profit_taskId]
output_tasks.append(max_discounted_profit_task.task_id)
time_cum += max_discounted_profit_task.duration
benefit_cum += max_discounted_profit
remaining_tasks.remove(max_discounted_profit_task)
curr_output_tasks = output_tasks
to_append_for_curr_output_tasks = []
for task in tasks:
if task.task_id not in curr_output_tasks:
to_append_for_curr_output_tasks.append(task.task_id)
random.shuffle(to_append_for_curr_output_tasks)
curr_output_tasks = curr_output_tasks + to_append_for_curr_output_tasks
############################## TO CHANGE ####################################################
early_abort_epoch = 5
start = time.time()
while True:
curr_benefit = fitness(curr_output_tasks, tasks)
exit_curr_loop = False
i, j, k = random.sample(range(1, len(tasks)), 3)
curr_output_tasks[i], curr_output_tasks[j], curr_output_tasks[k] = curr_output_tasks[k], curr_output_tasks[i], curr_output_tasks[j]
while True:
curr_benefit = fitness(curr_output_tasks, tasks)
for i in range(len(tasks)):
for j in range(i+1, len(tasks)):
less_raito = tasks[curr_output_tasks[j]-1].get_benefit_over_duration_ratio() < tasks[curr_output_tasks[i]-1].get_benefit_over_duration_ratio()
later_ddl = tasks[curr_output_tasks[j]-1].deadline > tasks[curr_output_tasks[i]-1].deadline
if less_raito and later_ddl:
continue
new_output_task = curr_output_tasks[:]
new_output_task[i], new_output_task[j] = new_output_task[j], new_output_task[i]
new_benefit = fitness(new_output_task, tasks)
if new_benefit > curr_benefit:
curr_output_tasks = new_output_task
curr_benefit = new_benefit
exit_curr_loop = True
break
if exit_curr_loop:
break
if exit_curr_loop == False:
break
epoch_idx += 1
exit_curr_loop = False
if curr_benefit > temp_best_benefit:
temp_best_benefit = curr_benefit
temp_best_plan = curr_output_tasks[:]
same = 0
else:
same += 1
if same > early_abort_epoch:
break
# end = time.time()
# elapsed = end - start
count = count + 1
# print(f"{count}. epoch: {epoch_idx} benefit: {curr_benefit} time: {elapsed} best: {temp_best_benefit}")
epoch_idx = 0
end = time.time()
elapsed = end - start
best_plan_benefit = fitness(best_plan, tasks)
improvement = max(temp_best_benefit - best_plan_benefit, 0)
if improvement > 0:
best_plan_benefit = temp_best_benefit
best_plan = postprocessing(temp_best_plan[:], tasks)
opt_dict[input_path] = (best_plan[:], best_plan_benefit)
print(f" Overall best: {best_plan_benefit} Curr best: {temp_best_benefit} Improved: {improvement} Time: {elapsed}")
return best_plan, best_plan_benefit
inputs_categories = ["small", "medium", "large"]
optimized_input = { "small-111.in", "small-5.in", "small-57.in", "small-75.in", "small-266.in", "medium-69.in", "medium-75.in", "medium-77.in", "medium-85.in",
"medium-111.in", "medium-132.in", "medium-139.in", "medium-192.in", "medium-267.in", "large-5.in", "large-57.in", "large-69.in",
"large-75.in", "large-132.in" , "large-139.in", "large-192.in" }
_, not_first, ten_plus, twenty_plus = get_rank(team_name="22222222222222222222222222222222")
task_idx = 1
while True:
# for inputs_category in inputs_categories:
# for file_name in os.listdir(os.path.join('inputs/', inputs_category)):
for file_name in not_first:
if file_name[0] == ".":
continue
if (file_name in optimized_input):
continue
input_path = 'inputs/' + file_name.split('-')[0] + "/" + file_name + ".in"
print(f"{task_idx}. {file_name}")
output_path = 'outputs/' + file_name.split('-')[0] + "/" + file_name + '.out'
tasks = read_input_file(input_path)
output, benefit = solve(tasks, input_path)
total_benefit = total_benefit + benefit
with open('optimum_output.pickle', 'wb') as f:
pickle.dump(opt_dict, f)
write_output_file(output_path, output)
task_idx += 1
total_end = time.time()
total_elapsed = total_end - total_start
print(f"DONE! Total Benifit: {total_benefit} Total Time: {total_elapsed}")
total_benefit = 0
# task_idx = 1
# while True:
# total_benefit = 0
# inputs_category = "small"
# file_name = "small-27.in"
# input_path = 'inputs/' + inputs_category + "/" + file_name
# print(f"task {task_idx}: {input_path}")
# output_path = 'outputs/' + inputs_category + "/" + file_name[:-3] + '.out'
# tasks = read_input_file(input_path)
# output, benefit= solve(tasks, input_path)
# total_benefit = total_benefit + benefit
# with open('optimum_output.pickle', 'wb') as f:
# pickle.dump(opt_dict, f)
# write_output_file(output_path, output)
# task_idx += 1
# Here's an example of how to run your solver.
# if __name__ == '__main__':
# for input_path in os.listdir('inputs/'):
# output_path = 'outputs/' + input_path[:-3] + '.out'
# tasks = read_input_file(input_path)
# output = solve(tasks)
# write_output_file(output_path, output)