-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_ecgres.py
147 lines (101 loc) · 3.28 KB
/
main_ecgres.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import numpy as np
import math
import time
import matplotlib.pyplot as plt
import scipy.sparse as sp
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import model as model
import datapre as datapre
def train():
loss_history = []
valid_loss_history = []
model.train()
for epoch in range(epochs):
train_logits = model(tensor_adjacency, x_train)
loss = criterion(train_logits.double(), y_train)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("Epoch {:03d}: Loss {:.4f}".format(
epoch, loss.item()))
if epoch % validationInterval == 0:
valid_logits = model(tensor_adjacency, x_valid)
valid_loss = criterion(valid_logits.double(), y_valid)
print("Validation Loss {:.4f}".format(valid_loss))
return loss_history, valid_loss
def test():
model.eval()
for epoch in range(epochs):
output = model(tensor_adjacency, x_test)
loss_test = criterion(output, y_test)
print("Test set reults:",
"loss={:.4f}".format(loss_test.item()))
start_time_tr = time.time()
test_size = 0.2
random_state = 42
dim_hi = 64
dim_in = 12
f_in = 4
f_out = 118
depth = 6
epochs = 500
lr = 0.001
dropout = 0.5
validationInterval = 4
weight_decay = 5e-4
x, y = datapre.load_data()
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 42)
node_feature = x / x.sum(1, keepdims=True)
num_nodes = node_feature.shape
classes = np.unique(y)
n_classes = 111 # 118
n_ts = x.shape[0]
x_train = torch.tensor(x_train)
y_train = torch.tensor(y_train)
n_va = int(np.floor(0.01*n_ts))
x_valid = x_train[0:n_va]
y_valid = y_train[0:n_va]
x_train = x_train[n_va:]
y_train = y_train[n_va:]
y_train = y_train.resize_(n_classes, n_classes)
x_train = x_train.float()
y_valid = y_valid.resize_(n_classes, n_classes)
x_valid = x_valid.float()
dim_out = n_classes
adj = np.array(
[[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1],
[0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1],
[1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0],
[0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0],
[0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1],
[0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0]])
adj += sp.eye(adj.shape[0])
tensor_adj = torch.tensor(adj).float()
tensor_adjacency = model.gen_adj(tensor_adj)
model = model.Resgnn(dim_in, dim_hi, dim_out, dropout, depth)
# model = model.cognn(dim_in, dim_hi, dim_out)
criterion = nn.L1Loss()
optimizer = optim.Adam(model.parameters(),
lr=lr,
weight_decay=weight_decay)
loss = train()
print("Time elapsed during training: {:.4f}s".format(time.time() - start_time_tr))
start_time_te = time.time()
x_test = torch.tensor(x_test)
y_test = torch.tensor(y_test)
x_test = x_test.float()
y_test = y_test.float()
y_test = y_test.resize_(n_classes, n_classes)
test()
print("Time elapsed during testing: {:.4f}s".format(time.time() - start_time_te))