-
Notifications
You must be signed in to change notification settings - Fork 7
Description
After Fine-tuning on the CIFAR100 with the model that are self-supervised pretrained and then intermediate fine-tuned on ImageNet-22k, I got the 87.169 AUROC for ID CIFAR100-> OOD CIFAR10, this is a significant difference from the 98.3 AUROC reported in the paper, How can I get normal results?
The command line I ran and the results are shown below:
command line:
OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=2 run_class_finetuning.py --model beit_base_patch16_224 --data_path /home/ubuntu/code/open-set/MOOD --data_set cifar100 --nb_classes 100 --disable_eval_during_finetuning --finetune /home/ubuntu/code/open-set/MOOD/beit_base_patch16_224_pt22k_ft22k.pth --output_dir logs_cifar100_test --batch_size 128 --lr 1.5e-3 --update_freq 1 --warmup_epochs 5 --epochs 90 --layer_decay 0.65 --drop_path 0.2 --weight_decay 0.05 --layer_scale_init_value 0.1 --clip_grad 3.0
results: