diff --git a/your-code/pandas_1.ipynb b/your-code/pandas_1.ipynb
index 4f428ac..2979a45 100644
--- a/your-code/pandas_1.ipynb
+++ b/your-code/pandas_1.ipynb
@@ -44,10 +44,34 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 3,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 5.7\n",
+ "1 75.2\n",
+ "2 74.4\n",
+ "3 84.0\n",
+ "4 66.5\n",
+ "5 66.3\n",
+ "6 55.8\n",
+ "7 75.7\n",
+ "8 29.1\n",
+ "9 43.7\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "myseries = pd.Series(lst)\n",
+ "myseries"
+ ]
},
{
"cell_type": "markdown",
@@ -60,10 +84,24 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 4,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "74.4"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "indexing_third_value = pd.Series(lst)\n",
+ "indexing_third_value[2]"
+ ]
},
{
"cell_type": "markdown",
@@ -74,7 +112,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
@@ -92,10 +130,145 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 6,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ " 35.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ " 37.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ " 14.6 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ " 4.2 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ " 22.8 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ " 31.8 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ " 83.8 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ " 88.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ " 72.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ " 81.6 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "c = pd.DataFrame(b)\n",
+ "c"
+ ]
},
{
"cell_type": "markdown",
@@ -106,7 +279,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
@@ -124,7 +297,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
@@ -133,10 +306,52 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 9,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Index(['Score_1', 'Score_2', 'Score_3', 'Score_4', 'Score_5'], dtype='object')\n"
+ ]
+ }
+ ],
+ "source": [
+ "# renaming data frame columns\n",
+ "\n",
+ "renaming_data = pd.DataFrame(b, columns = colnames)\n",
+ "print(renaming_data.columns)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Score_1 Score_2 Score_3 Score_4 Score_5\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7\n"
+ ]
+ }
+ ],
+ "source": [
+ "# we check if it is correct getting the data frame\n",
+ "\n",
+ "print(renaming_data)"
+ ]
},
{
"cell_type": "markdown",
@@ -147,10 +362,122 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 11,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_3 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 53.1 | \n",
+ " 67.5 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 61.3 | \n",
+ " 30.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20.6 | \n",
+ " 44.2 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 57.4 | \n",
+ " 96.1 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 83.6 | \n",
+ " 85.4 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 49.0 | \n",
+ " 0.1 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 23.3 | \n",
+ " 95.0 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 27.6 | \n",
+ " 53.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 96.6 | \n",
+ " 53.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 73.7 | \n",
+ " 43.2 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_3 Score_5\n",
+ "0 53.1 67.5 78.4\n",
+ "1 61.3 30.8 87.6\n",
+ "2 20.6 44.2 91.8\n",
+ "3 57.4 96.1 69.5\n",
+ "4 83.6 85.4 35.9\n",
+ "5 49.0 0.1 89.1\n",
+ "6 23.3 95.0 26.9\n",
+ "7 27.6 53.8 68.5\n",
+ "8 96.6 53.4 50.1\n",
+ "9 73.7 43.2 34.7"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "renaming_data[['Score_1','Score_3', 'Score_5']]"
+ ]
},
{
"cell_type": "markdown",
@@ -161,10 +488,146 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 12,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_2 | \n",
+ " Score_3 | \n",
+ " Score_4 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 10.00000 | \n",
+ " 10.00000 | \n",
+ " 10.000000 | \n",
+ " 10.000000 | \n",
+ " 10.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 54.62000 | \n",
+ " 50.11000 | \n",
+ " 56.950000 | \n",
+ " 47.280000 | \n",
+ " 63.250000 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 25.64899 | \n",
+ " 32.12204 | \n",
+ " 30.168278 | \n",
+ " 31.393446 | \n",
+ " 24.562313 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 20.60000 | \n",
+ " 0.10000 | \n",
+ " 0.100000 | \n",
+ " 4.200000 | \n",
+ " 26.900000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 32.95000 | \n",
+ " 29.55000 | \n",
+ " 43.450000 | \n",
+ " 25.050000 | \n",
+ " 39.450000 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 55.25000 | \n",
+ " 40.75000 | \n",
+ " 53.600000 | \n",
+ " 36.400000 | \n",
+ " 69.000000 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 70.60000 | \n",
+ " 72.15000 | \n",
+ " 80.925000 | \n",
+ " 79.300000 | \n",
+ " 85.300000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 96.60000 | \n",
+ " 96.40000 | \n",
+ " 96.100000 | \n",
+ " 88.800000 | \n",
+ " 91.800000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_2 Score_3 Score_4 Score_5\n",
+ "count 10.00000 10.00000 10.000000 10.000000 10.000000\n",
+ "mean 54.62000 50.11000 56.950000 47.280000 63.250000\n",
+ "std 25.64899 32.12204 30.168278 31.393446 24.562313\n",
+ "min 20.60000 0.10000 0.100000 4.200000 26.900000\n",
+ "25% 32.95000 29.55000 43.450000 25.050000 39.450000\n",
+ "50% 55.25000 40.75000 53.600000 36.400000 69.000000\n",
+ "75% 70.60000 72.15000 80.925000 79.300000 85.300000\n",
+ "max 96.60000 96.40000 96.100000 88.800000 91.800000"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "renaming_data.describe() #numerical columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "56.95000000000001"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "renaming_data[\"Score_3\"].mean()"
+ ]
},
{
"cell_type": "markdown",
@@ -175,10 +638,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 14,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "88.8"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "renaming_data[\"Score_4\"].max()"
+ ]
},
{
"cell_type": "markdown",
@@ -189,10 +665,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 15,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "40.75"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "renaming_data[\"Score_2\"].median()"
+ ]
},
{
"cell_type": "markdown",
@@ -203,7 +692,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
@@ -224,10 +713,134 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 17,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Description | \n",
+ " Quantity | \n",
+ " UnitPrice | \n",
+ " Revenue | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " LUNCH BAG APPLE DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " SET OF 60 VINTAGE LEAF CAKE CASES | \n",
+ " 24 | \n",
+ " 0.55 | \n",
+ " 13.20 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " RIBBON REEL STRIPES DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " WORLD WAR 2 GLIDERS ASSTD DESIGNS | \n",
+ " 2880 | \n",
+ " 0.18 | \n",
+ " 518.40 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " PLAYING CARDS JUBILEE UNION JACK | \n",
+ " 2 | \n",
+ " 1.25 | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " POPCORN HOLDER | \n",
+ " 7 | \n",
+ " 0.85 | \n",
+ " 5.95 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " BOX OF VINTAGE ALPHABET BLOCKS | \n",
+ " 1 | \n",
+ " 11.95 | \n",
+ " 11.95 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " PARTY BUNTING | \n",
+ " 4 | \n",
+ " 4.95 | \n",
+ " 19.80 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " JAZZ HEARTS ADDRESS BOOK | \n",
+ " 10 | \n",
+ " 0.19 | \n",
+ " 1.90 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " SET OF 4 SANTA PLACE SETTINGS | \n",
+ " 48 | \n",
+ " 1.25 | \n",
+ " 60.00 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Description Quantity UnitPrice Revenue\n",
+ "0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n",
+ "1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n",
+ "2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n",
+ "3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n",
+ "4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n",
+ "5 POPCORN HOLDER 7 0.85 5.95\n",
+ "6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n",
+ "7 PARTY BUNTING 4 4.95 19.80\n",
+ "8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n",
+ "9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "product_orders = pd.DataFrame(orders)\n",
+ "product_orders"
+ ]
},
{
"cell_type": "markdown",
@@ -238,10 +851,41 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 18,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "2978\n"
+ ]
+ }
+ ],
+ "source": [
+ "total_quantity = product_orders[\"Quantity\"].sum()\n",
+ "print(total_quantity)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "637.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "total_revenue = product_orders[\"Revenue\"].sum()\n",
+ "print(total_revenue)"
+ ]
},
{
"cell_type": "markdown",
@@ -252,10 +896,41 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 20,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "11.95\n",
+ "0.18\n"
+ ]
+ }
+ ],
+ "source": [
+ "most_expensive = product_orders[\"UnitPrice\"].max()\n",
+ "least_expensive = product_orders[\"UnitPrice\"].min()\n",
+ "print(most_expensive)\n",
+ "print(least_expensive)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "11.77\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(most_expensive - least_expensive)"
+ ]
},
{
"cell_type": "markdown",
@@ -266,7 +941,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
@@ -285,10 +960,130 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 23,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "0 1 337 118 4 4.5 4.5 9.65 \n",
+ "1 2 316 104 3 3.0 3.5 8.00 \n",
+ "2 3 322 110 3 3.5 2.5 8.67 \n",
+ "3 4 314 103 2 2.0 3.0 8.21 \n",
+ "4 5 330 115 5 4.5 3.0 9.34 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "0 1 0.92 \n",
+ "1 1 0.72 \n",
+ "2 1 0.80 \n",
+ "3 0 0.65 \n",
+ "4 1 0.90 "
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.head()"
+ ]
},
{
"cell_type": "markdown",
@@ -299,10 +1094,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 24,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "False"
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.isnull(admissions).values.any()"
+ ]
},
{
"cell_type": "markdown",
@@ -313,17 +1121,21 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 25,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "admissions.reset_index(inplace=True)"
+ ]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 26,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "admissions.set_index(\"Serial No.\", inplace=True) #you need to add inplace, othewise changes are not saved"
+ ]
},
{
"cell_type": "markdown",
@@ -334,10 +1146,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 27,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0"
+ ]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.duplicated(subset=[\"GRE Score\", \"CGPA\"]).sum()"
+ ]
},
{
"cell_type": "markdown",
@@ -348,10 +1173,232 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 29,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " index | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " Serial No. | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 4 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 10 | \n",
+ " 328 | \n",
+ " 112 | \n",
+ " 4 | \n",
+ " 4.0 | \n",
+ " 4.5 | \n",
+ " 9.10 | \n",
+ " 1 | \n",
+ " 0.78 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 19 | \n",
+ " 328 | \n",
+ " 116 | \n",
+ " 5 | \n",
+ " 5.0 | \n",
+ " 5.0 | \n",
+ " 9.50 | \n",
+ " 1 | \n",
+ " 0.94 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 20 | \n",
+ " 334 | \n",
+ " 119 | \n",
+ " 5 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.70 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 380 | \n",
+ " 379 | \n",
+ " 329 | \n",
+ " 111 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.0 | \n",
+ " 9.23 | \n",
+ " 1 | \n",
+ " 0.89 | \n",
+ "
\n",
+ " \n",
+ " 381 | \n",
+ " 380 | \n",
+ " 324 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 3.5 | \n",
+ " 9.04 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ "
\n",
+ " \n",
+ " 382 | \n",
+ " 381 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ "
\n",
+ " \n",
+ " 383 | \n",
+ " 382 | \n",
+ " 330 | \n",
+ " 116 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.45 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ "
\n",
+ " \n",
+ " 385 | \n",
+ " 384 | \n",
+ " 333 | \n",
+ " 117 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.0 | \n",
+ " 9.66 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
101 rows × 9 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " index GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "Serial No. \n",
+ "1 0 337 118 4 4.5 4.5 9.65 \n",
+ "5 4 330 115 5 4.5 3.0 9.34 \n",
+ "11 10 328 112 4 4.0 4.5 9.10 \n",
+ "20 19 328 116 5 5.0 5.0 9.50 \n",
+ "21 20 334 119 5 5.0 4.5 9.70 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "380 379 329 111 4 4.5 4.0 9.23 \n",
+ "381 380 324 110 3 3.5 3.5 9.04 \n",
+ "382 381 325 107 3 3.0 3.5 9.11 \n",
+ "383 382 330 116 4 5.0 4.5 9.45 \n",
+ "385 384 333 117 4 5.0 4.0 9.66 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "Serial No. \n",
+ "1 1 0.92 \n",
+ "5 1 0.90 \n",
+ "11 1 0.78 \n",
+ "20 1 0.94 \n",
+ "21 1 0.95 \n",
+ "... ... ... \n",
+ "380 1 0.89 \n",
+ "381 1 0.82 \n",
+ "382 1 0.84 \n",
+ "383 1 0.91 \n",
+ "385 1 0.95 \n",
+ "\n",
+ "[101 rows x 9 columns]"
+ ]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "rslt = admissions[(admissions['CGPA'] > 9) & (admissions['Research'] > 0)]\n",
+ "rslt"
+ ]
},
{
"cell_type": "markdown",
@@ -362,17 +1409,370 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 30,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " index | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " Serial No. | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 29 | \n",
+ " 28 | \n",
+ " 338 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 3.0 | \n",
+ " 4.5 | \n",
+ " 9.40 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ "
\n",
+ " \n",
+ " 63 | \n",
+ " 62 | \n",
+ " 327 | \n",
+ " 114 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 9.02 | \n",
+ " 0 | \n",
+ " 0.61 | \n",
+ "
\n",
+ " \n",
+ " 141 | \n",
+ " 140 | \n",
+ " 326 | \n",
+ " 114 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.83 | \n",
+ "
\n",
+ " \n",
+ " 218 | \n",
+ " 217 | \n",
+ " 324 | \n",
+ " 111 | \n",
+ " 4 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 9.01 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ "
\n",
+ " \n",
+ " 382 | \n",
+ " 381 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " index GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "Serial No. \n",
+ "29 28 338 118 4 3.0 4.5 9.40 \n",
+ "63 62 327 114 3 3.0 3.0 9.02 \n",
+ "141 140 326 114 3 3.0 3.0 9.11 \n",
+ "218 217 324 111 4 3.0 3.0 9.01 \n",
+ "382 381 325 107 3 3.0 3.5 9.11 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "Serial No. \n",
+ "29 1 0.91 \n",
+ "63 0 0.61 \n",
+ "141 1 0.83 \n",
+ "218 1 0.82 \n",
+ "382 1 0.84 "
+ ]
+ },
+ "execution_count": 30,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "rslt_4 = admissions[(admissions[\"CGPA\"]> 9) & (admissions[\"SOP\"] < 3.5)]\n",
+ "rslt_4"
+ ]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 32,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "#find the mean of CHANCE ADMIT\n",
+ "\n",
+ "mean_chance = rslt_4['Chance of Admit'].mean()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 100,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 380 | \n",
+ " 381 | \n",
+ " 324 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 3.5 | \n",
+ " 9.04 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ "
\n",
+ " \n",
+ " 381 | \n",
+ " 382 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ "
\n",
+ " \n",
+ " 382 | \n",
+ " 383 | \n",
+ " 330 | \n",
+ " 116 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.45 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ "
\n",
+ " \n",
+ " 383 | \n",
+ " 384 | \n",
+ " 312 | \n",
+ " 103 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 4.0 | \n",
+ " 8.78 | \n",
+ " 0 | \n",
+ " 0.67 | \n",
+ "
\n",
+ " \n",
+ " 384 | \n",
+ " 385 | \n",
+ " 333 | \n",
+ " 117 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.0 | \n",
+ " 9.66 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
385 rows × 9 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "0 1 337 118 4 4.5 4.5 9.65 \n",
+ "1 2 316 104 3 3.0 3.5 8.00 \n",
+ "2 3 322 110 3 3.5 2.5 8.67 \n",
+ "3 4 314 103 2 2.0 3.0 8.21 \n",
+ "4 5 330 115 5 4.5 3.0 9.34 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "380 381 324 110 3 3.5 3.5 9.04 \n",
+ "381 382 325 107 3 3.0 3.5 9.11 \n",
+ "382 383 330 116 4 5.0 4.5 9.45 \n",
+ "383 384 312 103 3 3.5 4.0 8.78 \n",
+ "384 385 333 117 4 5.0 4.0 9.66 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "0 1 0.92 \n",
+ "1 1 0.72 \n",
+ "2 1 0.80 \n",
+ "3 0 0.65 \n",
+ "4 1 0.90 \n",
+ ".. ... ... \n",
+ "380 1 0.82 \n",
+ "381 1 0.84 \n",
+ "382 1 0.91 \n",
+ "383 0 0.67 \n",
+ "384 1 0.95 \n",
+ "\n",
+ "[385 rows x 9 columns]"
+ ]
+ },
+ "execution_count": 100,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions"
+ ]
},
{
"cell_type": "markdown",
@@ -384,38 +1784,506 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 121,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "def new_column(i):\n",
+ " if i > 100:\n",
+ " return True\n",
+ " else:\n",
+ " return False\n",
+ " "
+ ]
},
{
- "cell_type": "markdown",
+ "cell_type": "code",
+ "execution_count": 122,
"metadata": {},
+ "outputs": [],
"source": [
- "Now we create a new column called \"Decision\" and apply to the TOEFL Score column"
+ "admissions[\"New Column\"] = admissions[\"TOEFL Score\"].apply(new_column)"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 123,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ " New Column | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 380 | \n",
+ " 381 | \n",
+ " 324 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 3.5 | \n",
+ " 9.04 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 381 | \n",
+ " 382 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 382 | \n",
+ " 383 | \n",
+ " 330 | \n",
+ " 116 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.45 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 383 | \n",
+ " 384 | \n",
+ " 312 | \n",
+ " 103 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 4.0 | \n",
+ " 8.78 | \n",
+ " 0 | \n",
+ " 0.67 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 384 | \n",
+ " 385 | \n",
+ " 333 | \n",
+ " 117 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.0 | \n",
+ " 9.66 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
385 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "0 1 337 118 4 4.5 4.5 9.65 \n",
+ "1 2 316 104 3 3.0 3.5 8.00 \n",
+ "2 3 322 110 3 3.5 2.5 8.67 \n",
+ "3 4 314 103 2 2.0 3.0 8.21 \n",
+ "4 5 330 115 5 4.5 3.0 9.34 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "380 381 324 110 3 3.5 3.5 9.04 \n",
+ "381 382 325 107 3 3.0 3.5 9.11 \n",
+ "382 383 330 116 4 5.0 4.5 9.45 \n",
+ "383 384 312 103 3 3.5 4.0 8.78 \n",
+ "384 385 333 117 4 5.0 4.0 9.66 \n",
+ "\n",
+ " Research Chance of Admit New Column \n",
+ "0 1 0.92 True \n",
+ "1 1 0.72 True \n",
+ "2 1 0.80 True \n",
+ "3 0 0.65 True \n",
+ "4 1 0.90 True \n",
+ ".. ... ... ... \n",
+ "380 1 0.82 True \n",
+ "381 1 0.84 True \n",
+ "382 1 0.91 True \n",
+ "383 0 0.67 True \n",
+ "384 1 0.95 True \n",
+ "\n",
+ "[385 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 123,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now we create a new column called \"Decision\" and apply to the TOEFL Score column"
+ ]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 124,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "admissions[\"Decision\"] = admissions[\"TOEFL Score\"]"
+ ]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 125,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ " New Column | \n",
+ " Decision | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ " True | \n",
+ " 118 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ " True | \n",
+ " 104 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ " True | \n",
+ " 110 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ " True | \n",
+ " 103 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ " True | \n",
+ " 115 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 380 | \n",
+ " 381 | \n",
+ " 324 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 3.5 | \n",
+ " 9.04 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ " True | \n",
+ " 110 | \n",
+ "
\n",
+ " \n",
+ " 381 | \n",
+ " 382 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ " True | \n",
+ " 107 | \n",
+ "
\n",
+ " \n",
+ " 382 | \n",
+ " 383 | \n",
+ " 330 | \n",
+ " 116 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.45 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ " True | \n",
+ " 116 | \n",
+ "
\n",
+ " \n",
+ " 383 | \n",
+ " 384 | \n",
+ " 312 | \n",
+ " 103 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 4.0 | \n",
+ " 8.78 | \n",
+ " 0 | \n",
+ " 0.67 | \n",
+ " True | \n",
+ " 103 | \n",
+ "
\n",
+ " \n",
+ " 384 | \n",
+ " 385 | \n",
+ " 333 | \n",
+ " 117 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.0 | \n",
+ " 9.66 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ " True | \n",
+ " 117 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
385 rows × 11 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "0 1 337 118 4 4.5 4.5 9.65 \n",
+ "1 2 316 104 3 3.0 3.5 8.00 \n",
+ "2 3 322 110 3 3.5 2.5 8.67 \n",
+ "3 4 314 103 2 2.0 3.0 8.21 \n",
+ "4 5 330 115 5 4.5 3.0 9.34 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "380 381 324 110 3 3.5 3.5 9.04 \n",
+ "381 382 325 107 3 3.0 3.5 9.11 \n",
+ "382 383 330 116 4 5.0 4.5 9.45 \n",
+ "383 384 312 103 3 3.5 4.0 8.78 \n",
+ "384 385 333 117 4 5.0 4.0 9.66 \n",
+ "\n",
+ " Research Chance of Admit New Column Decision \n",
+ "0 1 0.92 True 118 \n",
+ "1 1 0.72 True 104 \n",
+ "2 1 0.80 True 110 \n",
+ "3 0 0.65 True 103 \n",
+ "4 1 0.90 True 115 \n",
+ ".. ... ... ... ... \n",
+ "380 1 0.82 True 110 \n",
+ "381 1 0.84 True 107 \n",
+ "382 1 0.91 True 116 \n",
+ "383 0 0.67 True 103 \n",
+ "384 1 0.95 True 117 \n",
+ "\n",
+ "[385 rows x 11 columns]"
+ ]
+ },
+ "execution_count": 125,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions"
+ ]
},
{
"cell_type": "markdown",
@@ -427,10 +2295,262 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 127,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "admissions['decision2'] = np.where(admissions['SOP'] > 3, 1, 0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 128,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ " New Column | \n",
+ " Decision | \n",
+ " decision2 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ " True | \n",
+ " 118 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ " True | \n",
+ " 104 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ " True | \n",
+ " 110 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ " True | \n",
+ " 103 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ " True | \n",
+ " 115 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 380 | \n",
+ " 381 | \n",
+ " 324 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 3.5 | \n",
+ " 9.04 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ " True | \n",
+ " 110 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 381 | \n",
+ " 382 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ " True | \n",
+ " 107 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 382 | \n",
+ " 383 | \n",
+ " 330 | \n",
+ " 116 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.45 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ " True | \n",
+ " 116 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 383 | \n",
+ " 384 | \n",
+ " 312 | \n",
+ " 103 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 4.0 | \n",
+ " 8.78 | \n",
+ " 0 | \n",
+ " 0.67 | \n",
+ " True | \n",
+ " 103 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 384 | \n",
+ " 385 | \n",
+ " 333 | \n",
+ " 117 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.0 | \n",
+ " 9.66 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ " True | \n",
+ " 117 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
385 rows × 12 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "0 1 337 118 4 4.5 4.5 9.65 \n",
+ "1 2 316 104 3 3.0 3.5 8.00 \n",
+ "2 3 322 110 3 3.5 2.5 8.67 \n",
+ "3 4 314 103 2 2.0 3.0 8.21 \n",
+ "4 5 330 115 5 4.5 3.0 9.34 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "380 381 324 110 3 3.5 3.5 9.04 \n",
+ "381 382 325 107 3 3.0 3.5 9.11 \n",
+ "382 383 330 116 4 5.0 4.5 9.45 \n",
+ "383 384 312 103 3 3.5 4.0 8.78 \n",
+ "384 385 333 117 4 5.0 4.0 9.66 \n",
+ "\n",
+ " Research Chance of Admit New Column Decision decision2 \n",
+ "0 1 0.92 True 118 1 \n",
+ "1 1 0.72 True 104 0 \n",
+ "2 1 0.80 True 110 1 \n",
+ "3 0 0.65 True 103 0 \n",
+ "4 1 0.90 True 115 1 \n",
+ ".. ... ... ... ... ... \n",
+ "380 1 0.82 True 110 1 \n",
+ "381 1 0.84 True 107 0 \n",
+ "382 1 0.91 True 116 1 \n",
+ "383 0 0.67 True 103 1 \n",
+ "384 1 0.95 True 117 1 \n",
+ "\n",
+ "[385 rows x 12 columns]"
+ ]
+ },
+ "execution_count": 128,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions"
+ ]
}
],
"metadata": {
@@ -449,7 +2569,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.8"
+ "version": "3.10.9"
},
"toc": {
"base_numbering": "",