diff --git a/your-code/pandas_1.ipynb b/your-code/pandas_1.ipynb
index 4f428ac..230597c 100644
--- a/your-code/pandas_1.ipynb
+++ b/your-code/pandas_1.ipynb
@@ -44,10 +44,34 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 4,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 5.7\n",
+ "1 75.2\n",
+ "2 74.4\n",
+ "3 84.0\n",
+ "4 66.5\n",
+ "5 66.3\n",
+ "6 55.8\n",
+ "7 75.7\n",
+ "8 29.1\n",
+ "9 43.7\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "my_series = pd.Series(lst)\n",
+ "my_series"
+ ]
},
{
"cell_type": "markdown",
@@ -60,10 +84,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 6,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "74.4"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "my_series[2]"
+ ]
},
{
"cell_type": "markdown",
@@ -74,7 +111,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
@@ -92,10 +129,145 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 32,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ " 35.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ " 37.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ " 14.6 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ " 4.2 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ " 22.8 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ " 31.8 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ " 83.8 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ " 88.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ " 72.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ " 81.6 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7"
+ ]
+ },
+ "execution_count": 32,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df1=pd.DataFrame(b)\n",
+ "df1"
+ ]
},
{
"cell_type": "markdown",
@@ -124,7 +296,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
@@ -133,10 +305,148 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 37,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_2 | \n",
+ " Score_3 | \n",
+ " Score_4 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ " 35.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ " 37.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ " 14.6 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ " 4.2 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ " 22.8 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ " 31.8 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ " 83.8 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ " 88.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ " 72.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ " 81.6 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_2 Score_3 Score_4 Score_5\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7"
+ ]
+ },
+ "execution_count": 37,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df=df1.rename(columns={k:i for k,i in zip(list(df1.columns),colnames)})\n",
+ "df\n",
+ "\n",
+ "#or\n",
+ "#df1.columns = [i for i in colnames]"
+ ]
},
{
"cell_type": "markdown",
@@ -147,10 +457,123 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 39,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_3 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 53.1 | \n",
+ " 67.5 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 61.3 | \n",
+ " 30.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20.6 | \n",
+ " 44.2 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 57.4 | \n",
+ " 96.1 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 83.6 | \n",
+ " 85.4 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 49.0 | \n",
+ " 0.1 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 23.3 | \n",
+ " 95.0 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 27.6 | \n",
+ " 53.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 96.6 | \n",
+ " 53.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 73.7 | \n",
+ " 43.2 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_3 Score_5\n",
+ "0 53.1 67.5 78.4\n",
+ "1 61.3 30.8 87.6\n",
+ "2 20.6 44.2 91.8\n",
+ "3 57.4 96.1 69.5\n",
+ "4 83.6 85.4 35.9\n",
+ "5 49.0 0.1 89.1\n",
+ "6 23.3 95.0 26.9\n",
+ "7 27.6 53.8 68.5\n",
+ "8 96.6 53.4 50.1\n",
+ "9 73.7 43.2 34.7"
+ ]
+ },
+ "execution_count": 39,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "subset1=df[[\"Score_1\",\"Score_3\",\"Score_5\"]]\n",
+ "subset1"
+ ]
},
{
"cell_type": "markdown",
@@ -161,10 +584,24 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 41,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "56.95000000000001"
+ ]
+ },
+ "execution_count": 41,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "mean3 = df[\"Score_3\"].mean()\n",
+ "mean3"
+ ]
},
{
"cell_type": "markdown",
@@ -175,10 +612,24 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 42,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "88.8"
+ ]
+ },
+ "execution_count": 42,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "max4 = df[\"Score_4\"].max()\n",
+ "max4"
+ ]
},
{
"cell_type": "markdown",
@@ -189,10 +640,24 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 44,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "40.75"
+ ]
+ },
+ "execution_count": 44,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "median2 = df[\"Score_2\"].median()\n",
+ "median2"
+ ]
},
{
"cell_type": "markdown",
@@ -203,7 +668,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
@@ -224,10 +689,134 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 51,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Description | \n",
+ " Quantity | \n",
+ " UnitPrice | \n",
+ " Revenue | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " LUNCH BAG APPLE DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " SET OF 60 VINTAGE LEAF CAKE CASES | \n",
+ " 24 | \n",
+ " 0.55 | \n",
+ " 13.20 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " RIBBON REEL STRIPES DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " WORLD WAR 2 GLIDERS ASSTD DESIGNS | \n",
+ " 2880 | \n",
+ " 0.18 | \n",
+ " 518.40 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " PLAYING CARDS JUBILEE UNION JACK | \n",
+ " 2 | \n",
+ " 1.25 | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " POPCORN HOLDER | \n",
+ " 7 | \n",
+ " 0.85 | \n",
+ " 5.95 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " BOX OF VINTAGE ALPHABET BLOCKS | \n",
+ " 1 | \n",
+ " 11.95 | \n",
+ " 11.95 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " PARTY BUNTING | \n",
+ " 4 | \n",
+ " 4.95 | \n",
+ " 19.80 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " JAZZ HEARTS ADDRESS BOOK | \n",
+ " 10 | \n",
+ " 0.19 | \n",
+ " 1.90 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " SET OF 4 SANTA PLACE SETTINGS | \n",
+ " 48 | \n",
+ " 1.25 | \n",
+ " 60.00 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Description Quantity UnitPrice Revenue\n",
+ "0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n",
+ "1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n",
+ "2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n",
+ "3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n",
+ "4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n",
+ "5 POPCORN HOLDER 7 0.85 5.95\n",
+ "6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n",
+ "7 PARTY BUNTING 4 4.95 19.80\n",
+ "8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n",
+ "9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00"
+ ]
+ },
+ "execution_count": 51,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "my_df = pd.DataFrame(orders)\n",
+ "my_df"
+ ]
},
{
"cell_type": "markdown",
@@ -238,10 +827,24 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 54,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "total quantity ordered is 2978\n",
+ "Revenue generated is 637.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "tot_quantity = my_df[\"Quantity\"].sum()\n",
+ "revenue = my_df[\"Revenue\"].sum()\n",
+ "print(f\"total quantity ordered is {tot_quantity}\")\n",
+ "print(f\"Revenue generated is {revenue}\")"
+ ]
},
{
"cell_type": "markdown",
@@ -252,10 +855,22 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 55,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The difference between the most expensive and least expensive items ordered is 11.77\n"
+ ]
+ }
+ ],
+ "source": [
+ "most_exp = my_df[\"UnitPrice\"].max()\n",
+ "least_exp = my_df[\"UnitPrice\"].min()\n",
+ "print(f\"The difference between the most expensive and least expensive items ordered is {most_exp-least_exp}\")"
+ ]
},
{
"cell_type": "markdown",
@@ -266,7 +881,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 92,
"metadata": {},
"outputs": [],
"source": [
@@ -285,10 +900,130 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 93,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "0 1 337 118 4 4.5 4.5 9.65 \n",
+ "1 2 316 104 3 3.0 3.5 8.00 \n",
+ "2 3 322 110 3 3.5 2.5 8.67 \n",
+ "3 4 314 103 2 2.0 3.0 8.21 \n",
+ "4 5 330 115 5 4.5 3.0 9.34 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "0 1 0.92 \n",
+ "1 1 0.72 \n",
+ "2 1 0.80 \n",
+ "3 0 0.65 \n",
+ "4 1 0.90 "
+ ]
+ },
+ "execution_count": 93,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.head()"
+ ]
},
{
"cell_type": "markdown",
@@ -299,10 +1034,32 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 94,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Serial No. 0\n",
+ "GRE Score 0\n",
+ "TOEFL Score 0\n",
+ "University Rating 0\n",
+ "SOP 0\n",
+ "LOR 0\n",
+ "CGPA 0\n",
+ "Research 0\n",
+ "Chance of Admit 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 94,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.isna().sum()"
+ ]
},
{
"cell_type": "markdown",
@@ -313,17 +1070,232 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
+ "execution_count": 95,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " Serial No. | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 381 | \n",
+ " 381 | \n",
+ " 324 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 3.5 | \n",
+ " 9.04 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ "
\n",
+ " \n",
+ " 382 | \n",
+ " 382 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ "
\n",
+ " \n",
+ " 383 | \n",
+ " 383 | \n",
+ " 330 | \n",
+ " 116 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.45 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ "
\n",
+ " \n",
+ " 384 | \n",
+ " 384 | \n",
+ " 312 | \n",
+ " 103 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 4.0 | \n",
+ " 8.78 | \n",
+ " 0 | \n",
+ " 0.67 | \n",
+ "
\n",
+ " \n",
+ " 385 | \n",
+ " 385 | \n",
+ " 333 | \n",
+ " 117 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.0 | \n",
+ " 9.66 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
385 rows × 9 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR \\\n",
+ "Serial No. \n",
+ "1 1 337 118 4 4.5 4.5 \n",
+ "2 2 316 104 3 3.0 3.5 \n",
+ "3 3 322 110 3 3.5 2.5 \n",
+ "4 4 314 103 2 2.0 3.0 \n",
+ "5 5 330 115 5 4.5 3.0 \n",
+ "... ... ... ... ... ... ... \n",
+ "381 381 324 110 3 3.5 3.5 \n",
+ "382 382 325 107 3 3.0 3.5 \n",
+ "383 383 330 116 4 5.0 4.5 \n",
+ "384 384 312 103 3 3.5 4.0 \n",
+ "385 385 333 117 4 5.0 4.0 \n",
+ "\n",
+ " CGPA Research Chance of Admit \n",
+ "Serial No. \n",
+ "1 9.65 1 0.92 \n",
+ "2 8.00 1 0.72 \n",
+ "3 8.67 1 0.80 \n",
+ "4 8.21 0 0.65 \n",
+ "5 9.34 1 0.90 \n",
+ "... ... ... ... \n",
+ "381 9.04 1 0.82 \n",
+ "382 9.11 1 0.84 \n",
+ "383 9.45 1 0.91 \n",
+ "384 8.78 0 0.67 \n",
+ "385 9.66 1 0.95 \n",
+ "\n",
+ "[385 rows x 9 columns]"
+ ]
+ },
+ "execution_count": 95,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.set_index(\"Serial No.\",drop=False,inplace=True)\n",
+ "admissions"
+ ]
},
{
"cell_type": "markdown",
@@ -334,10 +1306,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 105,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0"
+ ]
+ },
+ "execution_count": 105,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.duplicated(subset=[\"GRE Score\",\"CGPA\"]).sum()"
+ ]
},
{
"cell_type": "markdown",
@@ -348,10 +1333,28 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 109,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "101"
+ ]
+ },
+ "execution_count": 109,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "condition1=admissions[\"CGPA\"]>9\n",
+ "condition2=admissions[\"Research\"]\n",
+ "len(admissions[condition1 & condition2]) \n",
+ "#or simply \n",
+ "#admissions[condition1 & condition2]\n",
+ "#you're going to see number of rows and columns"
+ ]
},
{
"cell_type": "markdown",
@@ -362,17 +1365,145 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 110,
"metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " Serial No. | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 29 | \n",
+ " 29 | \n",
+ " 338 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 3.0 | \n",
+ " 4.5 | \n",
+ " 9.40 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ "
\n",
+ " \n",
+ " 63 | \n",
+ " 63 | \n",
+ " 327 | \n",
+ " 114 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 9.02 | \n",
+ " 0 | \n",
+ " 0.61 | \n",
+ "
\n",
+ " \n",
+ " 141 | \n",
+ " 141 | \n",
+ " 326 | \n",
+ " 114 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.83 | \n",
+ "
\n",
+ " \n",
+ " 218 | \n",
+ " 218 | \n",
+ " 324 | \n",
+ " 111 | \n",
+ " 4 | \n",
+ " 3.0 | \n",
+ " 3.0 | \n",
+ " 9.01 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ "
\n",
+ " \n",
+ " 382 | \n",
+ " 382 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR \\\n",
+ "Serial No. \n",
+ "29 29 338 118 4 3.0 4.5 \n",
+ "63 63 327 114 3 3.0 3.0 \n",
+ "141 141 326 114 3 3.0 3.0 \n",
+ "218 218 324 111 4 3.0 3.0 \n",
+ "382 382 325 107 3 3.0 3.5 \n",
+ "\n",
+ " CGPA Research Chance of Admit \n",
+ "Serial No. \n",
+ "29 9.40 1 0.91 \n",
+ "63 9.02 0 0.61 \n",
+ "141 9.11 1 0.83 \n",
+ "218 9.01 1 0.82 \n",
+ "382 9.11 1 0.84 "
+ ]
+ },
+ "execution_count": 110,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "condition3=admissions[\"SOP\"]<3.5\n",
+ "admissions[condition1 & condition3]"
+ ]
},
{
"cell_type": "markdown",
@@ -384,10 +1515,13 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 111,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "def passTOEFL(score):\n",
+ " return score>100"
+ ]
},
{
"cell_type": "markdown",
@@ -398,24 +1532,253 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 114,
"metadata": {},
"outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
+ "source": [
+ "admissions[\"Decision\"] = admissions[\"TOEFL Score\"].apply(passTOEFL)"
+ ]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 115,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ " Decision | \n",
+ "
\n",
+ " \n",
+ " Serial No. | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 381 | \n",
+ " 381 | \n",
+ " 324 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 3.5 | \n",
+ " 9.04 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 382 | \n",
+ " 382 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 383 | \n",
+ " 383 | \n",
+ " 330 | \n",
+ " 116 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.45 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 384 | \n",
+ " 384 | \n",
+ " 312 | \n",
+ " 103 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 4.0 | \n",
+ " 8.78 | \n",
+ " 0 | \n",
+ " 0.67 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 385 | \n",
+ " 385 | \n",
+ " 333 | \n",
+ " 117 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.0 | \n",
+ " 9.66 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
385 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR \\\n",
+ "Serial No. \n",
+ "1 1 337 118 4 4.5 4.5 \n",
+ "2 2 316 104 3 3.0 3.5 \n",
+ "3 3 322 110 3 3.5 2.5 \n",
+ "4 4 314 103 2 2.0 3.0 \n",
+ "5 5 330 115 5 4.5 3.0 \n",
+ "... ... ... ... ... ... ... \n",
+ "381 381 324 110 3 3.5 3.5 \n",
+ "382 382 325 107 3 3.0 3.5 \n",
+ "383 383 330 116 4 5.0 4.5 \n",
+ "384 384 312 103 3 3.5 4.0 \n",
+ "385 385 333 117 4 5.0 4.0 \n",
+ "\n",
+ " CGPA Research Chance of Admit Decision \n",
+ "Serial No. \n",
+ "1 9.65 1 0.92 True \n",
+ "2 8.00 1 0.72 True \n",
+ "3 8.67 1 0.80 True \n",
+ "4 8.21 0 0.65 True \n",
+ "5 9.34 1 0.90 True \n",
+ "... ... ... ... ... \n",
+ "381 9.04 1 0.82 True \n",
+ "382 9.11 1 0.84 True \n",
+ "383 9.45 1 0.91 True \n",
+ "384 8.78 0 0.67 True \n",
+ "385 9.66 1 0.95 True \n",
+ "\n",
+ "[385 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 115,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions"
+ ]
},
{
"cell_type": "markdown",
@@ -427,10 +1790,266 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 117,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "admissions[\"decision2\"] = admissions[\"SOP\"].apply(lambda x : 1 if x>3 else 0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 118,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ " Decision | \n",
+ " decision2 | \n",
+ "
\n",
+ " \n",
+ " Serial No. | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ " True | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ " True | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 381 | \n",
+ " 381 | \n",
+ " 324 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 3.5 | \n",
+ " 9.04 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 382 | \n",
+ " 382 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ " True | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 383 | \n",
+ " 383 | \n",
+ " 330 | \n",
+ " 116 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.45 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 384 | \n",
+ " 384 | \n",
+ " 312 | \n",
+ " 103 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 4.0 | \n",
+ " 8.78 | \n",
+ " 0 | \n",
+ " 0.67 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 385 | \n",
+ " 385 | \n",
+ " 333 | \n",
+ " 117 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.0 | \n",
+ " 9.66 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
385 rows × 11 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR \\\n",
+ "Serial No. \n",
+ "1 1 337 118 4 4.5 4.5 \n",
+ "2 2 316 104 3 3.0 3.5 \n",
+ "3 3 322 110 3 3.5 2.5 \n",
+ "4 4 314 103 2 2.0 3.0 \n",
+ "5 5 330 115 5 4.5 3.0 \n",
+ "... ... ... ... ... ... ... \n",
+ "381 381 324 110 3 3.5 3.5 \n",
+ "382 382 325 107 3 3.0 3.5 \n",
+ "383 383 330 116 4 5.0 4.5 \n",
+ "384 384 312 103 3 3.5 4.0 \n",
+ "385 385 333 117 4 5.0 4.0 \n",
+ "\n",
+ " CGPA Research Chance of Admit Decision decision2 \n",
+ "Serial No. \n",
+ "1 9.65 1 0.92 True 1 \n",
+ "2 8.00 1 0.72 True 0 \n",
+ "3 8.67 1 0.80 True 1 \n",
+ "4 8.21 0 0.65 True 0 \n",
+ "5 9.34 1 0.90 True 1 \n",
+ "... ... ... ... ... ... \n",
+ "381 9.04 1 0.82 True 1 \n",
+ "382 9.11 1 0.84 True 0 \n",
+ "383 9.45 1 0.91 True 1 \n",
+ "384 8.78 0 0.67 True 1 \n",
+ "385 9.66 1 0.95 True 1 \n",
+ "\n",
+ "[385 rows x 11 columns]"
+ ]
+ },
+ "execution_count": 118,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions"
+ ]
}
],
"metadata": {
@@ -449,7 +2068,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.8"
+ "version": "3.11.5"
},
"toc": {
"base_numbering": "",