diff --git a/your-code/pandas_1.ipynb b/your-code/pandas_1.ipynb index 4f428ac..62c6d7a 100644 --- a/your-code/pandas_1.ipynb +++ b/your-code/pandas_1.ipynb @@ -35,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -44,10 +44,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 5.7\n", + "1 75.2\n", + "2 74.4\n", + "3 84.0\n", + "4 66.5\n", + "5 66.3\n", + "6 55.8\n", + "7 75.7\n", + "8 29.1\n", + "9 43.7\n", + "dtype: float64\n" + ] + } + ], + "source": [ + "l = pd.Series(lst)\n", + "print(l)" + ] }, { "cell_type": "markdown", @@ -60,10 +81,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "74.4\n" + ] + } + ], + "source": [ + "i = l.iloc[2]\n", + "print(i)" + ] }, { "cell_type": "markdown", @@ -74,7 +106,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -92,10 +124,145 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
01234
053.195.067.535.078.4
161.340.830.837.887.6
220.673.244.214.691.8
357.40.196.14.269.5
483.620.585.422.835.9
549.069.00.131.889.1
623.340.795.083.826.9
727.626.453.888.868.5
896.696.453.472.450.1
973.739.043.281.634.7
\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4\n", + "0 53.1 95.0 67.5 35.0 78.4\n", + "1 61.3 40.8 30.8 37.8 87.6\n", + "2 20.6 73.2 44.2 14.6 91.8\n", + "3 57.4 0.1 96.1 4.2 69.5\n", + "4 83.6 20.5 85.4 22.8 35.9\n", + "5 49.0 69.0 0.1 31.8 89.1\n", + "6 23.3 40.7 95.0 83.8 26.9\n", + "7 27.6 26.4 53.8 88.8 68.5\n", + "8 96.6 96.4 53.4 72.4 50.1\n", + "9 73.7 39.0 43.2 81.6 34.7" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mydataframe = pd.DataFrame(b)\n", + "mydataframe" + ] }, { "cell_type": "markdown", @@ -133,10 +300,145 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Score_1Score_2Score_3Score_4Score_5
053.195.067.535.078.4
161.340.830.837.887.6
220.673.244.214.691.8
357.40.196.14.269.5
483.620.585.422.835.9
549.069.00.131.889.1
623.340.795.083.826.9
727.626.453.888.868.5
896.696.453.472.450.1
973.739.043.281.634.7
\n", + "
" + ], + "text/plain": [ + " Score_1 Score_2 Score_3 Score_4 Score_5\n", + "0 53.1 95.0 67.5 35.0 78.4\n", + "1 61.3 40.8 30.8 37.8 87.6\n", + "2 20.6 73.2 44.2 14.6 91.8\n", + "3 57.4 0.1 96.1 4.2 69.5\n", + "4 83.6 20.5 85.4 22.8 35.9\n", + "5 49.0 69.0 0.1 31.8 89.1\n", + "6 23.3 40.7 95.0 83.8 26.9\n", + "7 27.6 26.4 53.8 88.8 68.5\n", + "8 96.6 96.4 53.4 72.4 50.1\n", + "9 73.7 39.0 43.2 81.6 34.7" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mydataframe = pd.DataFrame(b, columns=['Score_1', 'Score_2', 'Score_3', 'Score_4', 'Score_5'])\n", + "mydataframe" + ] }, { "cell_type": "markdown", @@ -147,10 +449,88 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Score_1Score_3
053.167.5
161.330.8
220.644.2
357.496.1
483.685.4
549.00.1
\n", + "
" + ], + "text/plain": [ + " Score_1 Score_3\n", + "0 53.1 67.5\n", + "1 61.3 30.8\n", + "2 20.6 44.2\n", + "3 57.4 96.1\n", + "4 83.6 85.4\n", + "5 49.0 0.1" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mysubset = mydataframe.loc[0:5,['Score_1','Score_3']]\n", + "mysubset" + ] }, { "cell_type": "markdown", @@ -161,10 +541,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "56.95000000000001\n" + ] + } + ], + "source": [ + "my_av = mydataframe['Score_3'].mean()\n", + "print(my_av)" + ] }, { "cell_type": "markdown", @@ -175,10 +566,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "88.8" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "the_max_of_mydataframe = mydataframe['Score_4'].max()\n", + "the_max_of_mydataframe" + ] }, { "cell_type": "markdown", @@ -189,10 +594,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "40.75" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mymedian = mydataframe['Score_2'].median()\n", + "mymedian" + ] }, { "cell_type": "markdown", @@ -203,7 +622,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 41, "metadata": {}, "outputs": [], "source": [ @@ -224,10 +643,134 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 42, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DescriptionQuantityUnitPriceRevenue
0LUNCH BAG APPLE DESIGN11.651.65
1SET OF 60 VINTAGE LEAF CAKE CASES240.5513.20
2RIBBON REEL STRIPES DESIGN11.651.65
3WORLD WAR 2 GLIDERS ASSTD DESIGNS28800.18518.40
4PLAYING CARDS JUBILEE UNION JACK21.252.50
5POPCORN HOLDER70.855.95
6BOX OF VINTAGE ALPHABET BLOCKS111.9511.95
7PARTY BUNTING44.9519.80
8JAZZ HEARTS ADDRESS BOOK100.191.90
9SET OF 4 SANTA PLACE SETTINGS481.2560.00
\n", + "
" + ], + "text/plain": [ + " Description Quantity UnitPrice Revenue\n", + "0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n", + "1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n", + "2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n", + "3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n", + "4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n", + "5 POPCORN HOLDER 7 0.85 5.95\n", + "6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n", + "7 PARTY BUNTING 4 4.95 19.80\n", + "8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n", + "9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "d_dataframe = pd.DataFrame(orders, columns=['Description', 'Quantity', 'UnitPrice', 'Revenue'])\n", + "d_dataframe" + ] }, { "cell_type": "markdown", @@ -238,10 +781,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 45, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2978\n", + "637.0\n" + ] + } + ], + "source": [ + "total_quantity = d_dataframe['Quantity'].sum()\n", + "total_revenue = d_dataframe['Revenue'].sum()\n", + "print(total_quantity)\n", + "print(total_revenue)" + ] }, { "cell_type": "markdown", @@ -252,10 +809,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 48, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "11.77\n" + ] + } + ], + "source": [ + "min_dtfrm = d_dataframe['UnitPrice'].min()\n", + "max_dtfrm = d_dataframe['UnitPrice'].max() \n", + "\n", + "difference = max_dtfrm - min_dtfrm\n", + "print(difference)" + ] }, { "cell_type": "markdown", @@ -266,7 +837,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ @@ -285,10 +856,33 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 51, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n", + "0 1 337 118 4 4.5 4.5 9.65 \n", + "1 2 316 104 3 3.0 3.5 8.00 \n", + "2 3 322 110 3 3.5 2.5 8.67 \n", + "3 4 314 103 2 2.0 3.0 8.21 \n", + "4 5 330 115 5 4.5 3.0 9.34 \n", + "\n", + " Research Chance of Admit \n", + "0 1 0.92 \n", + "1 1 0.72 \n", + "2 1 0.80 \n", + "3 0 0.65 \n", + "4 1 0.90 \n" + ] + } + ], + "source": [ + "thehead = admissions.head()\n", + "print(thehead)" + ] }, { "cell_type": "markdown", @@ -299,10 +893,218 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 52, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Serial No.GRE ScoreTOEFL ScoreUniversity RatingSOPLORCGPAResearchChance of Admit
0FalseFalseFalseFalseFalseFalseFalseFalseFalse
1FalseFalseFalseFalseFalseFalseFalseFalseFalse
2FalseFalseFalseFalseFalseFalseFalseFalseFalse
3FalseFalseFalseFalseFalseFalseFalseFalseFalse
4FalseFalseFalseFalseFalseFalseFalseFalseFalse
..............................
380FalseFalseFalseFalseFalseFalseFalseFalseFalse
381FalseFalseFalseFalseFalseFalseFalseFalseFalse
382FalseFalseFalseFalseFalseFalseFalseFalseFalse
383FalseFalseFalseFalseFalseFalseFalseFalseFalse
384FalseFalseFalseFalseFalseFalseFalseFalseFalse
\n", + "

385 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Serial No. GRE Score TOEFL Score University Rating SOP LOR \\\n", + "0 False False False False False False \n", + "1 False False False False False False \n", + "2 False False False False False False \n", + "3 False False False False False False \n", + "4 False False False False False False \n", + ".. ... ... ... ... ... ... \n", + "380 False False False False False False \n", + "381 False False False False False False \n", + "382 False False False False False False \n", + "383 False False False False False False \n", + "384 False False False False False False \n", + "\n", + " CGPA Research Chance of Admit \n", + "0 False False False \n", + "1 False False False \n", + "2 False False False \n", + "3 False False False \n", + "4 False False False \n", + ".. ... ... ... \n", + "380 False False False \n", + "381 False False False \n", + "382 False False False \n", + "383 False False False \n", + "384 False False False \n", + "\n", + "[385 rows x 9 columns]" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "null_values = admissions.isnull()\n", + "null_values" + ] }, { "cell_type": "markdown", @@ -313,17 +1115,57 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 61, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "new_index = admissions.set_index('Serial No.')" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 62, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n", + "Serial No. \n", + "1 337 118 4 4.5 4.5 9.65 \n", + "2 316 104 3 3.0 3.5 8.00 \n", + "3 322 110 3 3.5 2.5 8.67 \n", + "4 314 103 2 2.0 3.0 8.21 \n", + "5 330 115 5 4.5 3.0 9.34 \n", + "... ... ... ... ... ... ... \n", + "381 324 110 3 3.5 3.5 9.04 \n", + "382 325 107 3 3.0 3.5 9.11 \n", + "383 330 116 4 5.0 4.5 9.45 \n", + "384 312 103 3 3.5 4.0 8.78 \n", + "385 333 117 4 5.0 4.0 9.66 \n", + "\n", + " Research Chance of Admit \n", + "Serial No. \n", + "1 1 0.92 \n", + "2 1 0.72 \n", + "3 1 0.80 \n", + "4 0 0.65 \n", + "5 1 0.90 \n", + "... ... ... \n", + "381 1 0.82 \n", + "382 1 0.84 \n", + "383 1 0.91 \n", + "384 0 0.67 \n", + "385 1 0.95 \n", + "\n", + "[385 rows x 8 columns]\n" + ] + } + ], + "source": [ + "print(new_index)" + ] }, { "cell_type": "markdown", @@ -334,10 +1176,297 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 80, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Serial No.GRE ScoreTOEFL ScoreUniversity RatingSOPLORCGPAResearchChance of Admit
0133711844.54.59.6510.92
1231610433.03.58.0010.72
2332211033.52.58.6710.80
3431410322.03.08.2100.65
4533011554.53.09.3410.90
..............................
38038132411033.53.59.0410.82
38138232510733.03.59.1110.84
38238333011645.04.59.4510.91
38338431210333.54.08.7800.67
38438533311745.04.09.6610.95
\n", + "

385 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n", + "0 1 337 118 4 4.5 4.5 9.65 \n", + "1 2 316 104 3 3.0 3.5 8.00 \n", + "2 3 322 110 3 3.5 2.5 8.67 \n", + "3 4 314 103 2 2.0 3.0 8.21 \n", + "4 5 330 115 5 4.5 3.0 9.34 \n", + ".. ... ... ... ... ... ... ... \n", + "380 381 324 110 3 3.5 3.5 9.04 \n", + "381 382 325 107 3 3.0 3.5 9.11 \n", + "382 383 330 116 4 5.0 4.5 9.45 \n", + "383 384 312 103 3 3.5 4.0 8.78 \n", + "384 385 333 117 4 5.0 4.0 9.66 \n", + "\n", + " Research Chance of Admit \n", + "0 1 0.92 \n", + "1 1 0.72 \n", + "2 1 0.80 \n", + "3 0 0.65 \n", + "4 1 0.90 \n", + ".. ... ... \n", + "380 1 0.82 \n", + "381 1 0.84 \n", + "382 1 0.91 \n", + "383 0 0.67 \n", + "384 1 0.95 \n", + "\n", + "[385 rows x 9 columns]" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "admissions" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(admissions[\"GRE Score\"].unique()) == len(admissions[\"GRE Score\"]) #Sí hay repetidos" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "336" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "admissions[\"GRE Score\"].duplicated().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "217" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "admissions[\"CGPA\"].duplicated().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "admissions[[\"GRE Score\", \"CGPA\"]].duplicated().sum() # Sí son valores únicos" + ] }, { "cell_type": "markdown", @@ -348,10 +1477,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 104, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "condition = admissions[\"CGPA\"] > 9" + ] }, { "cell_type": "markdown", @@ -362,17 +1493,40 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 105, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 True\n", + "1 False\n", + "2 False\n", + "3 False\n", + "4 True\n", + " ... \n", + "380 True\n", + "381 True\n", + "382 True\n", + "383 False\n", + "384 True\n", + "Name: CGPA, Length: 385, dtype: bool\n" + ] + } + ], + "source": [ + "print(condition)" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 106, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "condition2 = admissions[\"CGPA\"] < 3.5" + ] }, { "cell_type": "markdown", @@ -384,10 +1538,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 108, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "def newcolum():\n", + " admissions[Decision] = []\n", + " if admissions[\"TOEFL\"] > 100:\n", + " admissions[Decision] = \"False\"\n", + " admissions.apply(Decision, axis=1)\n", + " else:\n", + " admissions[Decision] = \"True\"\n", + " admissions.apply(Decision, axis=1)" + ] }, { "cell_type": "markdown", @@ -449,7 +1612,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.8" + "version": "3.11.4" }, "toc": { "base_numbering": "",