diff --git a/your-code/pandas_1.ipynb b/your-code/pandas_1.ipynb
index 4f428ac..62c6d7a 100644
--- a/your-code/pandas_1.ipynb
+++ b/your-code/pandas_1.ipynb
@@ -35,7 +35,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -44,10 +44,31 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 6,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0 5.7\n",
+ "1 75.2\n",
+ "2 74.4\n",
+ "3 84.0\n",
+ "4 66.5\n",
+ "5 66.3\n",
+ "6 55.8\n",
+ "7 75.7\n",
+ "8 29.1\n",
+ "9 43.7\n",
+ "dtype: float64\n"
+ ]
+ }
+ ],
+ "source": [
+ "l = pd.Series(lst)\n",
+ "print(l)"
+ ]
},
{
"cell_type": "markdown",
@@ -60,10 +81,21 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 18,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "74.4\n"
+ ]
+ }
+ ],
+ "source": [
+ "i = l.iloc[2]\n",
+ "print(i)"
+ ]
},
{
"cell_type": "markdown",
@@ -74,7 +106,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
@@ -92,10 +124,145 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 27,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ " 35.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ " 37.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ " 14.6 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ " 4.2 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ " 22.8 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ " 31.8 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ " 83.8 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ " 88.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ " 72.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ " 81.6 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7"
+ ]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "mydataframe = pd.DataFrame(b)\n",
+ "mydataframe"
+ ]
},
{
"cell_type": "markdown",
@@ -133,10 +300,145 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 28,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_2 | \n",
+ " Score_3 | \n",
+ " Score_4 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ " 35.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ " 37.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ " 14.6 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ " 4.2 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ " 22.8 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ " 31.8 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ " 83.8 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ " 88.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ " 72.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ " 81.6 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_2 Score_3 Score_4 Score_5\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7"
+ ]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "mydataframe = pd.DataFrame(b, columns=['Score_1', 'Score_2', 'Score_3', 'Score_4', 'Score_5'])\n",
+ "mydataframe"
+ ]
},
{
"cell_type": "markdown",
@@ -147,10 +449,88 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 32,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_3 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 53.1 | \n",
+ " 67.5 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 61.3 | \n",
+ " 30.8 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20.6 | \n",
+ " 44.2 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 57.4 | \n",
+ " 96.1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 83.6 | \n",
+ " 85.4 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 49.0 | \n",
+ " 0.1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_3\n",
+ "0 53.1 67.5\n",
+ "1 61.3 30.8\n",
+ "2 20.6 44.2\n",
+ "3 57.4 96.1\n",
+ "4 83.6 85.4\n",
+ "5 49.0 0.1"
+ ]
+ },
+ "execution_count": 32,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "mysubset = mydataframe.loc[0:5,['Score_1','Score_3']]\n",
+ "mysubset"
+ ]
},
{
"cell_type": "markdown",
@@ -161,10 +541,21 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 36,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "56.95000000000001\n"
+ ]
+ }
+ ],
+ "source": [
+ "my_av = mydataframe['Score_3'].mean()\n",
+ "print(my_av)"
+ ]
},
{
"cell_type": "markdown",
@@ -175,10 +566,24 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 37,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "88.8"
+ ]
+ },
+ "execution_count": 37,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "the_max_of_mydataframe = mydataframe['Score_4'].max()\n",
+ "the_max_of_mydataframe"
+ ]
},
{
"cell_type": "markdown",
@@ -189,10 +594,24 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 39,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "40.75"
+ ]
+ },
+ "execution_count": 39,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "mymedian = mydataframe['Score_2'].median()\n",
+ "mymedian"
+ ]
},
{
"cell_type": "markdown",
@@ -203,7 +622,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
@@ -224,10 +643,134 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 42,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Description | \n",
+ " Quantity | \n",
+ " UnitPrice | \n",
+ " Revenue | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " LUNCH BAG APPLE DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " SET OF 60 VINTAGE LEAF CAKE CASES | \n",
+ " 24 | \n",
+ " 0.55 | \n",
+ " 13.20 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " RIBBON REEL STRIPES DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " WORLD WAR 2 GLIDERS ASSTD DESIGNS | \n",
+ " 2880 | \n",
+ " 0.18 | \n",
+ " 518.40 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " PLAYING CARDS JUBILEE UNION JACK | \n",
+ " 2 | \n",
+ " 1.25 | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " POPCORN HOLDER | \n",
+ " 7 | \n",
+ " 0.85 | \n",
+ " 5.95 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " BOX OF VINTAGE ALPHABET BLOCKS | \n",
+ " 1 | \n",
+ " 11.95 | \n",
+ " 11.95 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " PARTY BUNTING | \n",
+ " 4 | \n",
+ " 4.95 | \n",
+ " 19.80 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " JAZZ HEARTS ADDRESS BOOK | \n",
+ " 10 | \n",
+ " 0.19 | \n",
+ " 1.90 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " SET OF 4 SANTA PLACE SETTINGS | \n",
+ " 48 | \n",
+ " 1.25 | \n",
+ " 60.00 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Description Quantity UnitPrice Revenue\n",
+ "0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n",
+ "1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n",
+ "2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n",
+ "3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n",
+ "4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n",
+ "5 POPCORN HOLDER 7 0.85 5.95\n",
+ "6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n",
+ "7 PARTY BUNTING 4 4.95 19.80\n",
+ "8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n",
+ "9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00"
+ ]
+ },
+ "execution_count": 42,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "d_dataframe = pd.DataFrame(orders, columns=['Description', 'Quantity', 'UnitPrice', 'Revenue'])\n",
+ "d_dataframe"
+ ]
},
{
"cell_type": "markdown",
@@ -238,10 +781,24 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 45,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "2978\n",
+ "637.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "total_quantity = d_dataframe['Quantity'].sum()\n",
+ "total_revenue = d_dataframe['Revenue'].sum()\n",
+ "print(total_quantity)\n",
+ "print(total_revenue)"
+ ]
},
{
"cell_type": "markdown",
@@ -252,10 +809,24 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 48,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "11.77\n"
+ ]
+ }
+ ],
+ "source": [
+ "min_dtfrm = d_dataframe['UnitPrice'].min()\n",
+ "max_dtfrm = d_dataframe['UnitPrice'].max() \n",
+ "\n",
+ "difference = max_dtfrm - min_dtfrm\n",
+ "print(difference)"
+ ]
},
{
"cell_type": "markdown",
@@ -266,7 +837,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
@@ -285,10 +856,33 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 51,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "0 1 337 118 4 4.5 4.5 9.65 \n",
+ "1 2 316 104 3 3.0 3.5 8.00 \n",
+ "2 3 322 110 3 3.5 2.5 8.67 \n",
+ "3 4 314 103 2 2.0 3.0 8.21 \n",
+ "4 5 330 115 5 4.5 3.0 9.34 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "0 1 0.92 \n",
+ "1 1 0.72 \n",
+ "2 1 0.80 \n",
+ "3 0 0.65 \n",
+ "4 1 0.90 \n"
+ ]
+ }
+ ],
+ "source": [
+ "thehead = admissions.head()\n",
+ "print(thehead)"
+ ]
},
{
"cell_type": "markdown",
@@ -299,10 +893,218 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 52,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 380 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 381 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 382 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 383 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 384 | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
385 rows × 9 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR \\\n",
+ "0 False False False False False False \n",
+ "1 False False False False False False \n",
+ "2 False False False False False False \n",
+ "3 False False False False False False \n",
+ "4 False False False False False False \n",
+ ".. ... ... ... ... ... ... \n",
+ "380 False False False False False False \n",
+ "381 False False False False False False \n",
+ "382 False False False False False False \n",
+ "383 False False False False False False \n",
+ "384 False False False False False False \n",
+ "\n",
+ " CGPA Research Chance of Admit \n",
+ "0 False False False \n",
+ "1 False False False \n",
+ "2 False False False \n",
+ "3 False False False \n",
+ "4 False False False \n",
+ ".. ... ... ... \n",
+ "380 False False False \n",
+ "381 False False False \n",
+ "382 False False False \n",
+ "383 False False False \n",
+ "384 False False False \n",
+ "\n",
+ "[385 rows x 9 columns]"
+ ]
+ },
+ "execution_count": 52,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "null_values = admissions.isnull()\n",
+ "null_values"
+ ]
},
{
"cell_type": "markdown",
@@ -313,17 +1115,57 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 61,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "new_index = admissions.set_index('Serial No.')"
+ ]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 62,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "Serial No. \n",
+ "1 337 118 4 4.5 4.5 9.65 \n",
+ "2 316 104 3 3.0 3.5 8.00 \n",
+ "3 322 110 3 3.5 2.5 8.67 \n",
+ "4 314 103 2 2.0 3.0 8.21 \n",
+ "5 330 115 5 4.5 3.0 9.34 \n",
+ "... ... ... ... ... ... ... \n",
+ "381 324 110 3 3.5 3.5 9.04 \n",
+ "382 325 107 3 3.0 3.5 9.11 \n",
+ "383 330 116 4 5.0 4.5 9.45 \n",
+ "384 312 103 3 3.5 4.0 8.78 \n",
+ "385 333 117 4 5.0 4.0 9.66 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "Serial No. \n",
+ "1 1 0.92 \n",
+ "2 1 0.72 \n",
+ "3 1 0.80 \n",
+ "4 0 0.65 \n",
+ "5 1 0.90 \n",
+ "... ... ... \n",
+ "381 1 0.82 \n",
+ "382 1 0.84 \n",
+ "383 1 0.91 \n",
+ "384 0 0.67 \n",
+ "385 1 0.95 \n",
+ "\n",
+ "[385 rows x 8 columns]\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(new_index)"
+ ]
},
{
"cell_type": "markdown",
@@ -334,10 +1176,297 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 80,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 380 | \n",
+ " 381 | \n",
+ " 324 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 3.5 | \n",
+ " 9.04 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ "
\n",
+ " \n",
+ " 381 | \n",
+ " 382 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ "
\n",
+ " \n",
+ " 382 | \n",
+ " 383 | \n",
+ " 330 | \n",
+ " 116 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.45 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ "
\n",
+ " \n",
+ " 383 | \n",
+ " 384 | \n",
+ " 312 | \n",
+ " 103 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 4.0 | \n",
+ " 8.78 | \n",
+ " 0 | \n",
+ " 0.67 | \n",
+ "
\n",
+ " \n",
+ " 384 | \n",
+ " 385 | \n",
+ " 333 | \n",
+ " 117 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.0 | \n",
+ " 9.66 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
385 rows × 9 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "0 1 337 118 4 4.5 4.5 9.65 \n",
+ "1 2 316 104 3 3.0 3.5 8.00 \n",
+ "2 3 322 110 3 3.5 2.5 8.67 \n",
+ "3 4 314 103 2 2.0 3.0 8.21 \n",
+ "4 5 330 115 5 4.5 3.0 9.34 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "380 381 324 110 3 3.5 3.5 9.04 \n",
+ "381 382 325 107 3 3.0 3.5 9.11 \n",
+ "382 383 330 116 4 5.0 4.5 9.45 \n",
+ "383 384 312 103 3 3.5 4.0 8.78 \n",
+ "384 385 333 117 4 5.0 4.0 9.66 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "0 1 0.92 \n",
+ "1 1 0.72 \n",
+ "2 1 0.80 \n",
+ "3 0 0.65 \n",
+ "4 1 0.90 \n",
+ ".. ... ... \n",
+ "380 1 0.82 \n",
+ "381 1 0.84 \n",
+ "382 1 0.91 \n",
+ "383 0 0.67 \n",
+ "384 1 0.95 \n",
+ "\n",
+ "[385 rows x 9 columns]"
+ ]
+ },
+ "execution_count": 80,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 97,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "False"
+ ]
+ },
+ "execution_count": 97,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(admissions[\"GRE Score\"].unique()) == len(admissions[\"GRE Score\"]) #Sí hay repetidos"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 92,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "336"
+ ]
+ },
+ "execution_count": 92,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions[\"GRE Score\"].duplicated().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 94,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "217"
+ ]
+ },
+ "execution_count": 94,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions[\"CGPA\"].duplicated().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 90,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0"
+ ]
+ },
+ "execution_count": 90,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions[[\"GRE Score\", \"CGPA\"]].duplicated().sum() # Sí son valores únicos"
+ ]
},
{
"cell_type": "markdown",
@@ -348,10 +1477,12 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 104,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "condition = admissions[\"CGPA\"] > 9"
+ ]
},
{
"cell_type": "markdown",
@@ -362,17 +1493,40 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 105,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0 True\n",
+ "1 False\n",
+ "2 False\n",
+ "3 False\n",
+ "4 True\n",
+ " ... \n",
+ "380 True\n",
+ "381 True\n",
+ "382 True\n",
+ "383 False\n",
+ "384 True\n",
+ "Name: CGPA, Length: 385, dtype: bool\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(condition)"
+ ]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 106,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "condition2 = admissions[\"CGPA\"] < 3.5"
+ ]
},
{
"cell_type": "markdown",
@@ -384,10 +1538,19 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 108,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "def newcolum():\n",
+ " admissions[Decision] = []\n",
+ " if admissions[\"TOEFL\"] > 100:\n",
+ " admissions[Decision] = \"False\"\n",
+ " admissions.apply(Decision, axis=1)\n",
+ " else:\n",
+ " admissions[Decision] = \"True\"\n",
+ " admissions.apply(Decision, axis=1)"
+ ]
},
{
"cell_type": "markdown",
@@ -449,7 +1612,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.8"
+ "version": "3.11.4"
},
"toc": {
"base_numbering": "",