diff --git a/your-code/pandas_1.ipynb b/your-code/pandas_1.ipynb
index 4f428ac..e25fbcb 100644
--- a/your-code/pandas_1.ipynb
+++ b/your-code/pandas_1.ipynb
@@ -44,10 +44,12 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 3,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "panda_series = pd.Series([5.7, 75.2, 74.4, 84.0, 66.5, 66.3, 55.8, 75.7, 29.1, 43.7])"
+ ]
},
{
"cell_type": "markdown",
@@ -60,10 +62,43 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 15,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "74.4"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "panda_series[2]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "74.4"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "panda_series.iloc[2]"
+ ]
},
{
"cell_type": "markdown",
@@ -74,7 +109,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
@@ -92,10 +127,145 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 18,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ " 35.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ " 37.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ " 14.6 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ " 4.2 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ " 22.8 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ " 31.8 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ " 83.8 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ " 88.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ " 72.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ " 81.6 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.DataFrame(b)\n",
+ "df"
+ ]
},
{
"cell_type": "markdown",
@@ -106,7 +276,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
@@ -124,7 +294,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
@@ -133,10 +303,145 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 23,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_2 | \n",
+ " Score_3 | \n",
+ " Score_4 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 53.1 | \n",
+ " 95.0 | \n",
+ " 67.5 | \n",
+ " 35.0 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 61.3 | \n",
+ " 40.8 | \n",
+ " 30.8 | \n",
+ " 37.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20.6 | \n",
+ " 73.2 | \n",
+ " 44.2 | \n",
+ " 14.6 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 57.4 | \n",
+ " 0.1 | \n",
+ " 96.1 | \n",
+ " 4.2 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 83.6 | \n",
+ " 20.5 | \n",
+ " 85.4 | \n",
+ " 22.8 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 49.0 | \n",
+ " 69.0 | \n",
+ " 0.1 | \n",
+ " 31.8 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 23.3 | \n",
+ " 40.7 | \n",
+ " 95.0 | \n",
+ " 83.8 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 27.6 | \n",
+ " 26.4 | \n",
+ " 53.8 | \n",
+ " 88.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 96.6 | \n",
+ " 96.4 | \n",
+ " 53.4 | \n",
+ " 72.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 73.7 | \n",
+ " 39.0 | \n",
+ " 43.2 | \n",
+ " 81.6 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_2 Score_3 Score_4 Score_5\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7"
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.DataFrame(b, columns = colnames)\n",
+ "df"
+ ]
},
{
"cell_type": "markdown",
@@ -147,10 +452,123 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 24,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_3 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 53.1 | \n",
+ " 67.5 | \n",
+ " 78.4 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 61.3 | \n",
+ " 30.8 | \n",
+ " 87.6 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20.6 | \n",
+ " 44.2 | \n",
+ " 91.8 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 57.4 | \n",
+ " 96.1 | \n",
+ " 69.5 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 83.6 | \n",
+ " 85.4 | \n",
+ " 35.9 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 49.0 | \n",
+ " 0.1 | \n",
+ " 89.1 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 23.3 | \n",
+ " 95.0 | \n",
+ " 26.9 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 27.6 | \n",
+ " 53.8 | \n",
+ " 68.5 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 96.6 | \n",
+ " 53.4 | \n",
+ " 50.1 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 73.7 | \n",
+ " 43.2 | \n",
+ " 34.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_3 Score_5\n",
+ "0 53.1 67.5 78.4\n",
+ "1 61.3 30.8 87.6\n",
+ "2 20.6 44.2 91.8\n",
+ "3 57.4 96.1 69.5\n",
+ "4 83.6 85.4 35.9\n",
+ "5 49.0 0.1 89.1\n",
+ "6 23.3 95.0 26.9\n",
+ "7 27.6 53.8 68.5\n",
+ "8 96.6 53.4 50.1\n",
+ "9 73.7 43.2 34.7"
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_subset = df[[\"Score_1\", \"Score_3\",\"Score_5\"]]\n",
+ "df_subset"
+ ]
},
{
"cell_type": "markdown",
@@ -161,10 +579,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 30,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "56.95000000000001"
+ ]
+ },
+ "execution_count": 30,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"Score_3\"].mean()"
+ ]
},
{
"cell_type": "markdown",
@@ -175,10 +606,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 32,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "88.8"
+ ]
+ },
+ "execution_count": 32,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"Score_4\"].max()"
+ ]
},
{
"cell_type": "markdown",
@@ -189,10 +633,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 33,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "36.4"
+ ]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"Score_4\"].median()"
+ ]
},
{
"cell_type": "markdown",
@@ -203,7 +660,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
@@ -224,10 +681,136 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
+ "execution_count": 69,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Description | \n",
+ " Quantity | \n",
+ " UnitPrice | \n",
+ " Revenue | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " LUNCH BAG APPLE DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " SET OF 60 VINTAGE LEAF CAKE CASES | \n",
+ " 24 | \n",
+ " 0.55 | \n",
+ " 13.20 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " RIBBON REEL STRIPES DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " WORLD WAR 2 GLIDERS ASSTD DESIGNS | \n",
+ " 2880 | \n",
+ " 0.18 | \n",
+ " 518.40 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " PLAYING CARDS JUBILEE UNION JACK | \n",
+ " 2 | \n",
+ " 1.25 | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " POPCORN HOLDER | \n",
+ " 7 | \n",
+ " 0.85 | \n",
+ " 5.95 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " BOX OF VINTAGE ALPHABET BLOCKS | \n",
+ " 1 | \n",
+ " 11.95 | \n",
+ " 11.95 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " PARTY BUNTING | \n",
+ " 4 | \n",
+ " 4.95 | \n",
+ " 19.80 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " JAZZ HEARTS ADDRESS BOOK | \n",
+ " 10 | \n",
+ " 0.19 | \n",
+ " 1.90 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " SET OF 4 SANTA PLACE SETTINGS | \n",
+ " 48 | \n",
+ " 1.25 | \n",
+ " 60.00 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Description Quantity UnitPrice Revenue\n",
+ "0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n",
+ "1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n",
+ "2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n",
+ "3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n",
+ "4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n",
+ "5 POPCORN HOLDER 7 0.85 5.95\n",
+ "6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n",
+ "7 PARTY BUNTING 4 4.95 19.80\n",
+ "8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n",
+ "9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00"
+ ]
+ },
+ "execution_count": 69,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.DataFrame.from_dict(orders)\n",
+ "df_from_dict"
+ ]
},
{
"cell_type": "markdown",
@@ -238,10 +821,26 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
+ "execution_count": 70,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total quantity is: 2978\n",
+ "Total revenue is: 637.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "total_quantity = df_from_dict[\"Quantity\"].sum()\n",
+ "print(f'Total quantity is: {total_quantity}')\n",
+ "total_revenue = df_from_dict[\"Revenue\"].sum()\n",
+ "print(f'Total revenue is: {total_revenue}')"
+ ]
},
{
"cell_type": "markdown",
@@ -252,10 +851,21 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 72,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "11.77\n"
+ ]
+ }
+ ],
+ "source": [
+ "difference = df_from_dict[\"UnitPrice\"].max() - df_from_dict[\"UnitPrice\"].min()\n",
+ "print(difference)"
+ ]
},
{
"cell_type": "markdown",
@@ -266,7 +876,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 73,
"metadata": {},
"outputs": [],
"source": [
@@ -285,10 +895,130 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 75,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "0 1 337 118 4 4.5 4.5 9.65 \n",
+ "1 2 316 104 3 3.0 3.5 8.00 \n",
+ "2 3 322 110 3 3.5 2.5 8.67 \n",
+ "3 4 314 103 2 2.0 3.0 8.21 \n",
+ "4 5 330 115 5 4.5 3.0 9.34 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "0 1 0.92 \n",
+ "1 1 0.72 \n",
+ "2 1 0.80 \n",
+ "3 0 0.65 \n",
+ "4 1 0.90 "
+ ]
+ },
+ "execution_count": 75,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.head()"
+ ]
},
{
"cell_type": "markdown",
@@ -299,10 +1029,32 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 77,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Serial No. 0\n",
+ "GRE Score 0\n",
+ "TOEFL Score 0\n",
+ "University Rating 0\n",
+ "SOP 0\n",
+ "LOR 0\n",
+ "CGPA 0\n",
+ "Research 0\n",
+ "Chance of Admit 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 77,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.isnull().sum()"
+ ]
},
{
"cell_type": "markdown",
@@ -313,31 +1065,267 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 79,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " Serial No. | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 381 | \n",
+ " 381 | \n",
+ " 324 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 3.5 | \n",
+ " 9.04 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ "
\n",
+ " \n",
+ " 382 | \n",
+ " 382 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ "
\n",
+ " \n",
+ " 383 | \n",
+ " 383 | \n",
+ " 330 | \n",
+ " 116 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.45 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ "
\n",
+ " \n",
+ " 384 | \n",
+ " 384 | \n",
+ " 312 | \n",
+ " 103 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 4.0 | \n",
+ " 8.78 | \n",
+ " 0 | \n",
+ " 0.67 | \n",
+ "
\n",
+ " \n",
+ " 385 | \n",
+ " 385 | \n",
+ " 333 | \n",
+ " 117 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.0 | \n",
+ " 9.66 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
385 rows × 9 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR \\\n",
+ "Serial No. \n",
+ "1 1 337 118 4 4.5 4.5 \n",
+ "2 2 316 104 3 3.0 3.5 \n",
+ "3 3 322 110 3 3.5 2.5 \n",
+ "4 4 314 103 2 2.0 3.0 \n",
+ "5 5 330 115 5 4.5 3.0 \n",
+ "... ... ... ... ... ... ... \n",
+ "381 381 324 110 3 3.5 3.5 \n",
+ "382 382 325 107 3 3.0 3.5 \n",
+ "383 383 330 116 4 5.0 4.5 \n",
+ "384 384 312 103 3 3.5 4.0 \n",
+ "385 385 333 117 4 5.0 4.0 \n",
+ "\n",
+ " CGPA Research Chance of Admit \n",
+ "Serial No. \n",
+ "1 9.65 1 0.92 \n",
+ "2 8.00 1 0.72 \n",
+ "3 8.67 1 0.80 \n",
+ "4 8.21 0 0.65 \n",
+ "5 9.34 1 0.90 \n",
+ "... ... ... ... \n",
+ "381 9.04 1 0.82 \n",
+ "382 9.11 1 0.84 \n",
+ "383 9.45 1 0.91 \n",
+ "384 8.78 0 0.67 \n",
+ "385 9.66 1 0.95 \n",
+ "\n",
+ "[385 rows x 9 columns]"
+ ]
+ },
+ "execution_count": 79,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.set_index(\"Serial No.\",drop = False)"
+ ]
},
{
- "cell_type": "code",
- "execution_count": null,
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [],
- "source": []
+ "source": [
+ "#### Turns out that GRE Score and CGPA also uniquely identify the data. Show this in the cell below."
+ ]
},
{
- "cell_type": "markdown",
+ "cell_type": "code",
+ "execution_count": 115,
"metadata": {},
+ "outputs": [],
"source": [
- "\"Turns out that GRE Score and CGPA also uniquely identify the data. Show this in the cell below.\""
+ "admissions[\"GRE Score and CGPA\"] = admissions[\"GRE Score\"].astype(str) + \" and \" + admissions[\"CGPA\"].astype(str)"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 116,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "True"
+ ]
+ },
+ "execution_count": 116,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions[\"GRE Score and CGPA\"].is_unique"
+ ]
},
{
"cell_type": "markdown",
@@ -348,31 +1336,190 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 117,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "condition_1 = admissions[\"CGPA\"] > 9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 118,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ " GRE Score and CGPA | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 357 | \n",
+ " 358 | \n",
+ " 336 | \n",
+ " 119 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.0 | \n",
+ " 9.62 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ " 336 and 9.62 | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 29 | \n",
+ " 338 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 3.0 | \n",
+ " 4.5 | \n",
+ " 9.40 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ " 338 and 9.4 | \n",
+ "
\n",
+ " \n",
+ " 380 | \n",
+ " 381 | \n",
+ " 324 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 3.5 | \n",
+ " 9.04 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ " 324 and 9.04 | \n",
+ "
\n",
+ " \n",
+ " 43 | \n",
+ " 44 | \n",
+ " 339 | \n",
+ " 119 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 4.0 | \n",
+ " 9.70 | \n",
+ " 0 | \n",
+ " 0.89 | \n",
+ " 339 and 9.7 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 21 | \n",
+ " 334 | \n",
+ " 119 | \n",
+ " 5 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.70 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ " 334 and 9.7 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "357 358 336 119 4 4.5 4.0 9.62 \n",
+ "28 29 338 118 4 3.0 4.5 9.40 \n",
+ "380 381 324 110 3 3.5 3.5 9.04 \n",
+ "43 44 339 119 5 4.5 4.0 9.70 \n",
+ "20 21 334 119 5 5.0 4.5 9.70 \n",
+ "\n",
+ " Research Chance of Admit GRE Score and CGPA \n",
+ "357 1 0.95 336 and 9.62 \n",
+ "28 1 0.91 338 and 9.4 \n",
+ "380 1 0.82 324 and 9.04 \n",
+ "43 0 0.89 339 and 9.7 \n",
+ "20 1 0.95 334 and 9.7 "
+ ]
+ },
+ "execution_count": 118,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions[condition_1].sample(5)"
+ ]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "#### 4 - Now return all the rows where the CGPA is greater than 9 and the SOP score is less than 3.5. Find the mean chance of admit for these applicants."
+ "### 4 - Now return all the rows where the CGPA is greater than 9 and the SOP score is less than 3.5. Find the mean chance of admit for these applicants."
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 119,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "condition_2 = admissions[\"SOP\"] < 3.5"
+ ]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 124,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "new_admissions = admissions[condition_1 & condition_2]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 125,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.8019999999999999"
+ ]
+ },
+ "execution_count": 125,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "new_admissions[\"Chance of Admit\"].mean()"
+ ]
},
{
"cell_type": "markdown",
@@ -384,10 +1531,15 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 131,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "def Toefl (TOEFL_Score):\n",
+ " if TOEFL_Score > 100:\n",
+ " return True\n",
+ " return False"
+ ]
},
{
"cell_type": "markdown",
@@ -398,31 +1550,508 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 135,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ " GRE Score and CGPA | \n",
+ " Decision | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ " 337 and 9.65 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ " 316 and 8.0 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ " 322 and 8.67 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ " 314 and 8.21 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ " 330 and 9.34 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 380 | \n",
+ " 381 | \n",
+ " 324 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 3.5 | \n",
+ " 9.04 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ " 324 and 9.04 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 381 | \n",
+ " 382 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ " 325 and 9.11 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 382 | \n",
+ " 383 | \n",
+ " 330 | \n",
+ " 116 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.45 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ " 330 and 9.45 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 383 | \n",
+ " 384 | \n",
+ " 312 | \n",
+ " 103 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 4.0 | \n",
+ " 8.78 | \n",
+ " 0 | \n",
+ " 0.67 | \n",
+ " 312 and 8.78 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 384 | \n",
+ " 385 | \n",
+ " 333 | \n",
+ " 117 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.0 | \n",
+ " 9.66 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ " 333 and 9.66 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
385 rows × 11 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "0 1 337 118 4 4.5 4.5 9.65 \n",
+ "1 2 316 104 3 3.0 3.5 8.00 \n",
+ "2 3 322 110 3 3.5 2.5 8.67 \n",
+ "3 4 314 103 2 2.0 3.0 8.21 \n",
+ "4 5 330 115 5 4.5 3.0 9.34 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "380 381 324 110 3 3.5 3.5 9.04 \n",
+ "381 382 325 107 3 3.0 3.5 9.11 \n",
+ "382 383 330 116 4 5.0 4.5 9.45 \n",
+ "383 384 312 103 3 3.5 4.0 8.78 \n",
+ "384 385 333 117 4 5.0 4.0 9.66 \n",
+ "\n",
+ " Research Chance of Admit GRE Score and CGPA Decision \n",
+ "0 1 0.92 337 and 9.65 True \n",
+ "1 1 0.72 316 and 8.0 True \n",
+ "2 1 0.80 322 and 8.67 True \n",
+ "3 0 0.65 314 and 8.21 True \n",
+ "4 1 0.90 330 and 9.34 True \n",
+ ".. ... ... ... ... \n",
+ "380 1 0.82 324 and 9.04 True \n",
+ "381 1 0.84 325 and 9.11 True \n",
+ "382 1 0.91 330 and 9.45 True \n",
+ "383 0 0.67 312 and 8.78 True \n",
+ "384 1 0.95 333 and 9.66 True \n",
+ "\n",
+ "[385 rows x 11 columns]"
+ ]
+ },
+ "execution_count": 135,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions[\"Decision\"] = admissions.apply(lambda x: Toefl(x[\"TOEFL Score\"]), axis = 1)\n",
+ "admissions"
+ ]
},
{
- "cell_type": "code",
- "execution_count": null,
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [],
- "source": []
+ "source": [
+ "Create a column called `decision2` in the `admissions` dataframe. Assign 1 to this column if the value of `SOP` is greater than 3 and 0 otherwise. \n",
+ "HINT (use np.where)"
+ ]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 141,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "admissions[\"decision2\"] = np.where(admissions['SOP'] > 3,1,0)"
+ ]
},
{
- "cell_type": "markdown",
+ "cell_type": "code",
+ "execution_count": 142,
"metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ " GRE Score and CGPA | \n",
+ " Decision | \n",
+ " decision2 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ " 337 and 9.65 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ " 316 and 8.0 | \n",
+ " True | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ " 322 and 8.67 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ " 314 and 8.21 | \n",
+ " True | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ " 330 and 9.34 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 380 | \n",
+ " 381 | \n",
+ " 324 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 3.5 | \n",
+ " 9.04 | \n",
+ " 1 | \n",
+ " 0.82 | \n",
+ " 324 and 9.04 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 381 | \n",
+ " 382 | \n",
+ " 325 | \n",
+ " 107 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 9.11 | \n",
+ " 1 | \n",
+ " 0.84 | \n",
+ " 325 and 9.11 | \n",
+ " True | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 382 | \n",
+ " 383 | \n",
+ " 330 | \n",
+ " 116 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.5 | \n",
+ " 9.45 | \n",
+ " 1 | \n",
+ " 0.91 | \n",
+ " 330 and 9.45 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 383 | \n",
+ " 384 | \n",
+ " 312 | \n",
+ " 103 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 4.0 | \n",
+ " 8.78 | \n",
+ " 0 | \n",
+ " 0.67 | \n",
+ " 312 and 8.78 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 384 | \n",
+ " 385 | \n",
+ " 333 | \n",
+ " 117 | \n",
+ " 4 | \n",
+ " 5.0 | \n",
+ " 4.0 | \n",
+ " 9.66 | \n",
+ " 1 | \n",
+ " 0.95 | \n",
+ " 333 and 9.66 | \n",
+ " True | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
385 rows × 12 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "0 1 337 118 4 4.5 4.5 9.65 \n",
+ "1 2 316 104 3 3.0 3.5 8.00 \n",
+ "2 3 322 110 3 3.5 2.5 8.67 \n",
+ "3 4 314 103 2 2.0 3.0 8.21 \n",
+ "4 5 330 115 5 4.5 3.0 9.34 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "380 381 324 110 3 3.5 3.5 9.04 \n",
+ "381 382 325 107 3 3.0 3.5 9.11 \n",
+ "382 383 330 116 4 5.0 4.5 9.45 \n",
+ "383 384 312 103 3 3.5 4.0 8.78 \n",
+ "384 385 333 117 4 5.0 4.0 9.66 \n",
+ "\n",
+ " Research Chance of Admit GRE Score and CGPA Decision decision2 \n",
+ "0 1 0.92 337 and 9.65 True 1 \n",
+ "1 1 0.72 316 and 8.0 True 0 \n",
+ "2 1 0.80 322 and 8.67 True 1 \n",
+ "3 0 0.65 314 and 8.21 True 0 \n",
+ "4 1 0.90 330 and 9.34 True 1 \n",
+ ".. ... ... ... ... ... \n",
+ "380 1 0.82 324 and 9.04 True 1 \n",
+ "381 1 0.84 325 and 9.11 True 0 \n",
+ "382 1 0.91 330 and 9.45 True 1 \n",
+ "383 0 0.67 312 and 8.78 True 1 \n",
+ "384 1 0.95 333 and 9.66 True 1 \n",
+ "\n",
+ "[385 rows x 12 columns]"
+ ]
+ },
+ "execution_count": 142,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "Create a column called `decision2` in the `admissions` dataframe. Assign 1 to this column if the value of `SOP` is greater than 3 and 0 otherwise. \n",
- "HINT (use np.where)"
+ "admissions"
]
},
{
@@ -435,9 +2064,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "ironhack",
"language": "python",
- "name": "python3"
+ "name": "ironhack"
},
"language_info": {
"codemirror_mode": {
@@ -449,7 +2078,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.8"
+ "version": "3.11.5"
},
"toc": {
"base_numbering": "",