-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
163 lines (121 loc) · 5.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
from utils.envs import initEnv
import torch.nn as nn
import torch.optim as optim
import os
import torch
from torch.autograd import Variable
import logging as log
from tensorboardX import SummaryWriter
from utils.preparation import get_training_dataloader, get_network, get_test_dataloader, WarmUpLR
from config import settings
def train(epoch):
net.train()
#print(net.train())
for batch_index, (images, labels) in enumerate(cifar100_training_loader):
if epoch <= config['warm']:
warmup_scheduler.step()
images = Variable(images)
labels = Variable(labels)
labels = labels.cuda()
images = images.cuda()
optimizer.zero_grad()
outputs = net(images)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
n_iter = (epoch - 1) * len(cifar100_training_loader) + batch_index + 1
last_layer = list(net.children())[-1]
for name, para in last_layer.named_parameters():
if 'weight' in name:
writer.add_scalar('LastLayerGradients/grad_norm2_weights', para.grad.norm(), n_iter)
if 'bias' in name:
writer.add_scalar('LastLayerGradients/grad_norm2_bias', para.grad.norm(), n_iter)
print('Training Epoch: {epoch} [{trained_samples}/{total_samples}]\tLoss: {:0.4f}\tLR: {:0.6f}'.format(
loss.item(),
optimizer.param_groups[0]['lr'],
epoch=epoch,
trained_samples=batch_index * config['batch_size'] + len(images),
total_samples=len(cifar100_training_loader.dataset)
))
# update training loss for each iteration
writer.add_scalar('Train/loss', loss.item(), n_iter)
for name, param in net.named_parameters():
layer, attr = os.path.splitext(name)
attr = attr[1:]
writer.add_histogram("{}/{}".format(layer, attr), param, epoch)
def eval_training(epoch):
net.eval()
test_loss = 0.0 # cost function error
correct = 0.0
for (images, labels) in cifar100_test_loader:
images = Variable(images)
labels = Variable(labels)
images = images.cuda()
labels = labels.cuda()
outputs = net(images)
loss = loss_function(outputs, labels)
test_loss += loss.item()
_, preds = outputs.max(1)
correct += preds.eq(labels).sum()
print('Test set: Average loss: {:.4f}, Accuracy: {:.4f}'.format(
test_loss / len(cifar100_test_loader.dataset),
correct.float() / len(cifar100_test_loader.dataset)
))
print()
# add informations to tensorboard
writer.add_scalar('Test/Average loss', test_loss / len(cifar100_test_loader.dataset), epoch)
writer.add_scalar('Test/Accuracy', correct.float() / len(cifar100_test_loader.dataset), epoch)
return correct.float() / len(cifar100_test_loader.dataset)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('model_name', help='model name', default=None)
args = parser.parse_args()
config = initEnv(args.model_name, train_flag=1)
net = get_network(args, use_gpu= True)
cifar100_training_loader = get_training_dataloader(
config['CIFAR100_TRAIN_MEAN'],
config['CIFAR100_TRAIN_STD'],
num_workers=config['nworkers'],
batch_size=config['batch_size'],
shuffle=config['shuffle']
)
cifar100_test_loader = get_test_dataloader(
config['CIFAR100_TRAIN_MEAN'],
config['CIFAR100_TRAIN_STD'],
num_workers=config['nworkers'],
batch_size=config['batch_size'],
shuffle=config['shuffle']
)
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=config['lr'], momentum=0.9, weight_decay=5e-4)
train_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=config['MILESTONES'], gamma=0.2) # learning rate decay
iter_per_epoch = len(cifar100_training_loader)
print(iter_per_epoch)
warmup_scheduler = WarmUpLR(optimizer, iter_per_epoch * config['warm'])
checkpoint_path = os.path.join(config['CHECKPOINT_PATH'], args.model_name, config['TIME_NOW'])
# use tensorboard
if not os.path.exists(config['LOG_DIR']):
os.mkdir(config['LOG_DIR'])
writer = SummaryWriter(log_dir=os.path.join(
config['LOG_DIR'], args.model_name, config['TIME_NOW']))
input_tensor = torch.Tensor(12, 3, 32, 32).cuda()
writer.add_graph(net, Variable(input_tensor, requires_grad=True))
# create checkpoint folder to save model
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
checkpoint_path = os.path.join(checkpoint_path, '{net}-{epoch}-{type}.pth')
best_acc = 0.0
for epoch in range(1, config['EPOCH']):
if epoch > config['warm']:
train_scheduler.step(epoch)
train(epoch)
acc = eval_training(epoch)
# start to save best performance model after learning rate decay to 0.01
if epoch > config['MILESTONES'][1] and best_acc < acc:
torch.save(net.state_dict(), checkpoint_path.format(net=args.model_name, epoch=epoch, type='best'))
best_acc = acc
continue
if not epoch % config['SAVE_EPOCH']:
torch.save(net.state_dict(), checkpoint_path.format(net=args.model_name, epoch=epoch, type='regular'))
writer.close()