|
1 | | -## CrossyRoad |
2 | | -EXE is under Execuatable folder |
3 | | - |
4 | | -## Document |
5 | | -More Document about MLagent is at https://github.com/Unity-Technologies/ml-agents/blob/release_19_docs/docs/Readme.md <br /> |
6 | | -Useful Doc: |
7 | | -- [API Docs/Python API Documentation](https://github.com/Unity-Technologies/ml-agents/blob/release_19_docs/docs/Python-API-Documentation.md) |
8 | | -- [API Docs/How to use the Python API](https://github.com/Unity-Technologies/ml-agents/blob/release_19_docs/docs/Python-API.md) |
9 | | -- [Python Tutorial with Google Colab/Using a UnityEnvironment](https://colab.research.google.com/github/Unity-Technologies/ml-agents/blob/release_19_docs/colab/Colab_UnityEnvironment_1_Run.ipynb) |
10 | | -- [Python Tutorial with Google Colab/Q-Learning with a UnityEnvironment](https://colab.research.google.com/github/Unity-Technologies/ml-agents/blob/release_19_docs/colab/Colab_UnityEnvironment_2_Train.ipynb) |
11 | | - |
12 | | -## Installation |
13 | | -1. create an enviroment with **Python 3.6 or 3.7** |
14 | | -2. Install the pytorch from https://pytorch.org/get-started/locally/ |
15 | | -3. Install the mlagent with pip |
16 | | -``` |
17 | | -python -m pip install mlagents==0.28.0 |
18 | | -``` |
19 | | -4. Install importlib-metadata |
20 | | -``` |
21 | | -pip install importlib-metadata==4.4 |
22 | | -``` |
23 | | -More Installation Detail at https://github.com/Unity-Technologies/ml-agents/blob/release_19_docs/docs/Installation.md |
24 | | - |
25 | | -## Usage (Command Line) |
26 | | -Run the MLAgent Default Model(PPO/SAC) by Anaconda command prompt under the folder with exe |
27 | | -``` |
28 | | -mlagents-learn <config path> --env=<exe name> --run-id=<run_name> |
29 | | -``` |
30 | | -It should be like |
31 | | -``` |
32 | | -mlagents-learn config\player_config.yaml --env="CRML" --run-id=test |
33 | | -``` |
34 | | - |
35 | | -## Usage (Python) |
36 | | -To load a Unity environment from a built binary file, put the file in the same directory |
37 | | -as enviroment(exe), run: |
38 | | -```python |
39 | | -from mlagents_envs.environment import UnityEnvironment |
40 | | -# This is a non-blocking call that only loads the environment. |
41 | | -env = UnityEnvironment(file_name="CRML", seed=1, side_channels=[]) |
42 | | -# Start interacting with the environment. |
43 | | -env.reset() |
44 | | -behavior_names = env.behavior_specs.keys() |
45 | | -... |
46 | | -``` |
47 | | -more Details at https://github.com/Unity-Technologies/ml-agents/blob/release_19_docs/docs/Python-API.md |
48 | | - |
49 | | -## Action Space |
50 | | -Continuous Action: 0 <br /> |
51 | | -Discrete Action: 1 <br /> |
52 | | -- Branch size: 5 <br /> |
53 | | -0: No Movement/1: Front/2: Back/3: Left/4: Right |
54 | | - |
55 | | -## Observation Space |
56 | | -Total size: 60 <br /> |
57 | | -30 feature obsered and with 2 stacked vector. |
58 | | -- size 2: Player Coordinate(X,Z) |
59 | | -- size 4: The type of line which relative to player(previous,current,next two)<br /> |
60 | | -type 0: Grass, 1: Road, 2: Water |
61 | | -- size 2: The Obstacles Coordinate(X,Z)<br /> |
62 | | -3 obstacle observed per line. 6 feature per line. Total 24 feature. |
63 | | - |
64 | | -## Changelogs |
65 | | -- v2.1: Reward should add correctly when beating the high score |
66 | | -- v2.0: Observation size now change to 60.<br/> |
67 | | -add Player coordinate, Line type, Obstacle coordinate to observation |
68 | | -- v1.0: Executable Create. Observation space size = 3 |
| 1 | +## CrossyRoad Unity |
| 2 | +Unity source code <br/> |
| 3 | +Find the Executable File [here](https://github.com/Introduction-to-Machine-Learning-Team4/Executable) |
0 commit comments