You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I have tried various versions of transformers (4.36.0, 4.40.0, 4.47.0, etc.), but I still encounter errors.Your assistance is greatly needed, thank you.
12/17 15:12:24 - mmengine - INFO - before_train in EvaluateChatHook.
The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's attention_mask to obtain reliable results. get_max_cache() is deprecated for all Cache classes. Use get_max_cache_shape() instead. Calling get_max_cache() will raise error from v4.48
Traceback (most recent call last):
File "/autodl-fs/data/hjxtuner/xtuner/xtuner/tools/train.py", line 342, in
main()
File "/autodl-fs/data/hjxtuner/xtuner/xtuner/tools/train.py", line 338, in main
runner.train()
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/mmengine/runner/_flexible_runner.py", line 1200, in train
model = self.train_loop.run() # type: ignore
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/mmengine/runner/loops.py", line 270, in run
self.runner.call_hook('before_train')
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/mmengine/runner/_flexible_runner.py", line 1271, in call_hook
getattr(hook, fn_name)(self, **kwargs)
File "/autodl-fs/data/hjxtuner/xtuner/xtuner/engine/hooks/evaluate_chat_hook.py", line 221, in before_train
self._generate_samples(runner, max_new_tokens=50)
File "/autodl-fs/data/hjxtuner/xtuner/xtuner/engine/hooks/evaluate_chat_hook.py", line 210, in _generate_samples
self._eval_language(runner, model, device, max_new_tokens,
File "/autodl-fs/data/hjxtuner/xtuner/xtuner/engine/hooks/evaluate_chat_hook.py", line 175, in _eval_language
generation_output = model.generate(
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/peft/peft_model.py", line 1838, in generate
outputs = self.base_model.generate(*args, **kwargs)
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/transformers/generation/utils.py", line 2252, in generate
result = self._sample(
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/transformers/generation/utils.py", line 3251, in _sample
outputs = self(**model_inputs, return_dict=True)
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/root/.cache/huggingface/modules/transformers_modules/internlm2-chat-1_8b/modeling_internlm2.py", line 1212, in forward
outputs = self.model(
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/root/.cache/huggingface/modules/transformers_modules/internlm2-chat-1_8b/modeling_internlm2.py", line 1008, in forward
layer_outputs = decoder_layer(
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/root/.cache/huggingface/modules/transformers_modules/internlm2-chat-1_8b/modeling_internlm2.py", line 742, in forward
hidden_states, self_attn_weights, present_key_value = self.attention(
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/autodl-fs/data/hjxtuner/xtuner/xtuner/model/modules/dispatch/internlm2.py", line 222, in internlm2_attn_forward
kv_seq_len += past_key_value[0].shape[-2]
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/transformers/cache_utils.py", line 390, in getitem
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
KeyError: 'Cache only has 0 layers, attempted to access layer with index 0'
The text was updated successfully, but these errors were encountered:
I have tried various versions of transformers (4.36.0, 4.40.0, 4.47.0, etc.), but I still encounter errors.Your assistance is greatly needed, thank you.
12/17 15:12:24 - mmengine - INFO - before_train in EvaluateChatHook.
The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's
attention_mask
to obtain reliable results.get_max_cache()
is deprecated for all Cache classes. Useget_max_cache_shape()
instead. Callingget_max_cache()
will raise error from v4.48Traceback (most recent call last):
File "/autodl-fs/data/hjxtuner/xtuner/xtuner/tools/train.py", line 342, in
main()
File "/autodl-fs/data/hjxtuner/xtuner/xtuner/tools/train.py", line 338, in main
runner.train()
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/mmengine/runner/_flexible_runner.py", line 1200, in train
model = self.train_loop.run() # type: ignore
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/mmengine/runner/loops.py", line 270, in run
self.runner.call_hook('before_train')
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/mmengine/runner/_flexible_runner.py", line 1271, in call_hook
getattr(hook, fn_name)(self, **kwargs)
File "/autodl-fs/data/hjxtuner/xtuner/xtuner/engine/hooks/evaluate_chat_hook.py", line 221, in before_train
self._generate_samples(runner, max_new_tokens=50)
File "/autodl-fs/data/hjxtuner/xtuner/xtuner/engine/hooks/evaluate_chat_hook.py", line 210, in _generate_samples
self._eval_language(runner, model, device, max_new_tokens,
File "/autodl-fs/data/hjxtuner/xtuner/xtuner/engine/hooks/evaluate_chat_hook.py", line 175, in _eval_language
generation_output = model.generate(
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/peft/peft_model.py", line 1838, in generate
outputs = self.base_model.generate(*args, **kwargs)
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/transformers/generation/utils.py", line 2252, in generate
result = self._sample(
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/transformers/generation/utils.py", line 3251, in _sample
outputs = self(**model_inputs, return_dict=True)
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/root/.cache/huggingface/modules/transformers_modules/internlm2-chat-1_8b/modeling_internlm2.py", line 1212, in forward
outputs = self.model(
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/root/.cache/huggingface/modules/transformers_modules/internlm2-chat-1_8b/modeling_internlm2.py", line 1008, in forward
layer_outputs = decoder_layer(
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/root/.cache/huggingface/modules/transformers_modules/internlm2-chat-1_8b/modeling_internlm2.py", line 742, in forward
hidden_states, self_attn_weights, present_key_value = self.attention(
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/autodl-fs/data/hjxtuner/xtuner/xtuner/model/modules/dispatch/internlm2.py", line 222, in internlm2_attn_forward
kv_seq_len += past_key_value[0].shape[-2]
File "/root/miniconda3/envs/xtuner/lib/python3.10/site-packages/transformers/cache_utils.py", line 390, in getitem
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
KeyError: 'Cache only has 0 layers, attempted to access layer with index 0'
The text was updated successfully, but these errors were encountered: