Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

xtuner 微调internLM2.5出错 #952

Open
sakura073 opened this issue Oct 18, 2024 · 9 comments
Open

xtuner 微调internLM2.5出错 #952

sakura073 opened this issue Oct 18, 2024 · 9 comments

Comments

@sakura073
Copy link

命令:(xtuner-env) root@autodl-container-d293479255-f53de588:~/autodl-tmp/data# xtuner train sh/internlm2_5_chat_7b_qlora_oasst1_e3_copy.py --deepspeed deepspeed_zero2
报错信息:10/18 16:45:32 - mmengine - WARNING - WARNING: command error: ''Adafactor is already registered in optimizer at torch.optim''!
10/18 16:45:32 - mmengine - WARNING -
Arguments received: ['xtuner', 'train', 'sh/internlm2_5_chat_7b_qlora_oasst1_e3_copy.py', '--deepspeed', 'deepspeed_zero2']. xtuner commands use the following syntax:

    xtuner MODE MODE_ARGS ARGS

    Where   MODE (required) is one of ('list-cfg', 'copy-cfg', 'log-dataset', 'check-custom-dataset', 'train', 'test', 'chat', 'convert', 'preprocess', 'mmbench', 'eval_refcoco')
            MODE_ARG (optional) is the argument for specific mode
            ARGS (optional) are the arguments for specific command

Some usages for xtuner commands: (See more by using -h for specific command!)

    1. List all predefined configs:
        xtuner list-cfg
    2. Copy a predefined config to a given path:
        xtuner copy-cfg $CONFIG $SAVE_FILE
    3-1. Fine-tune LLMs by a single GPU:
        xtuner train $CONFIG
    3-2. Fine-tune LLMs by multiple GPUs:
        NPROC_PER_NODE=$NGPUS NNODES=$NNODES NODE_RANK=$NODE_RANK PORT=$PORT ADDR=$ADDR xtuner dist_train $CONFIG $GPUS
    4-1. Convert the pth model to HuggingFace's model:
        xtuner convert pth_to_hf $CONFIG $PATH_TO_PTH_MODEL $SAVE_PATH_TO_HF_MODEL
    4-2. Merge the HuggingFace's adapter to the pretrained base model:
        xtuner convert merge $LLM $ADAPTER $SAVE_PATH
        xtuner convert merge $CLIP $ADAPTER $SAVE_PATH --is-clip
    4-3. Split HuggingFace's LLM to the smallest sharded one:
        xtuner convert split $LLM $SAVE_PATH
    5-1. Chat with LLMs with HuggingFace's model and adapter:
        xtuner chat $LLM --adapter $ADAPTER --prompt-template $PROMPT_TEMPLATE --system-template $SYSTEM_TEMPLATE
    5-2. Chat with VLMs with HuggingFace's model and LLaVA:
        xtuner chat $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --image $IMAGE --prompt-template $PROMPT_TEMPLATE --system-template $SYSTEM_TEMPLATE
    6-1. Preprocess arxiv dataset:
        xtuner preprocess arxiv $SRC_FILE $DST_FILE --start-date $START_DATE --categories $CATEGORIES
    6-2. Preprocess refcoco dataset:
        xtuner preprocess refcoco --ann-path $RefCOCO_ANN_PATH --image-path $COCO_IMAGE_PATH --save-path $SAVE_PATH
    7-1. Log processed dataset:
        xtuner log-dataset $CONFIG
    7-2. Verify the correctness of the config file for the custom dataset:
        xtuner check-custom-dataset $CONFIG
    8. MMBench evaluation:
        xtuner mmbench $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --prompt-template $PROMPT_TEMPLATE --data-path $MMBENCH_DATA_PATH
    9. Refcoco evaluation:
        xtuner eval_refcoco $LLM --llava $LLAVA --visual-encoder $VISUAL_ENCODER --prompt-template $PROMPT_TEMPLATE --data-path $REFCOCO_DATA_PATH
    10. List all dataset formats which are supported in XTuner

Run special commands:

    xtuner help
    xtuner version

GitHub: https://github.com/InternLM/xtuner

请教如何解决

@AI-Stock-pre
Copy link

解决了吗?

@binbinao
Copy link

看起来不维护了,也不打算解决了?

@a-drop-in-the-ocean456
Copy link

一样的问题,怎么解决

@sakura073
Copy link
Author

解决了xdm 把pytorch版本回退到2.4.1就可以了

@zl-comment
Copy link

什么?项目不维护了?连问题也不回答了?

@zl-comment
Copy link

解决了xdm 把pytorch版本回退到2.4.1就可以了

我也是这个问题我试一下

@FlyCarrot
Copy link

FlyCarrot commented Nov 1, 2024

mmengine不支持2.5.x的pytorch,应该是命名冲突了,改下mmengine的源码或者把pytorch降级一下就行

@minimum-generated-pig
Copy link

为什么我改成 2.4.1 了也不行啊还是一样的报错

@HelpFireCode
Copy link

兄弟们可以试试按照这个pip 装。这是我跑通后导出的依赖包文件。
fintune20241124.txt

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

8 participants