-
Notifications
You must be signed in to change notification settings - Fork 54
/
web_demo.py
131 lines (104 loc) · 4.77 KB
/
web_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""
This script refers to the dialogue example of streamlit, the interactive generation code of chatglm2 and transformers.
We mainly modified part of the code logic to adapt to the generation of our model.
Please refer to these links below for more information:
1. streamlit chat example: https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps
2. chatglm2: https://github.com/THUDM/ChatGLM2-6B
3. transformers: https://github.com/huggingface/transformers
"""
from dataclasses import asdict
import streamlit as st
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.utils import logging
from internlm.accelerator import get_accelerator
from internlm.utils.common import get_current_device
from tools.interface import GenerationConfig, generate_interactive
logger = logging.get_logger(__name__)
internlm_accelerator = get_accelerator()
def on_btn_click():
del st.session_state.messages
@st.cache_resource
def load_model():
model = (
AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b-v1_1", trust_remote_code=True)
.to(torch.bfloat16)
.to(get_current_device())
)
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b-v1_1", trust_remote_code=True)
return model, tokenizer
def prepare_generation_config():
with st.sidebar:
max_length = st.slider("Max Length", min_value=32, max_value=16000, value=8000)
top_p = st.slider("Top P", 0.0, 1.0, 0.8, step=0.01)
temperature = st.slider("Temperature", 0.0, 1.0, 0.8, step=0.01)
st.button("Clear Chat History", on_click=on_btn_click)
generation_config = GenerationConfig(max_length=max_length, top_p=top_p, temperature=temperature)
return generation_config
system_meta_instruction = (
"""<|System|>:You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). """
+ """It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""
)
user_prompt = "<|User|>:{user}\n"
robot_prompt = "<|Bot|>:{robot}<eoa>\n"
cur_query_prompt = "<|User|>:{user}\n<|Bot|>:"
def combine_history(prompt):
messages = st.session_state.messages
total_prompt = ""
for message in messages:
cur_content = message["content"]
if message["role"] == "user":
cur_prompt = user_prompt.replace("{user}", cur_content)
elif message["role"] == "robot":
cur_prompt = robot_prompt.replace("{robot}", cur_content)
else:
raise RuntimeError
total_prompt += cur_prompt
total_prompt = system_meta_instruction + total_prompt + cur_query_prompt.replace("{user}", prompt)
return total_prompt
def main():
# internlm_accelerator.empty_cache()
print("load model begin.")
model, tokenizer = load_model()
print("load model end.")
user_avator = "doc/imgs/user.png"
robot_avator = "doc/imgs/robot.png"
st.title("InternLM-Chat-7B")
generation_config = prepare_generation_config()
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=message.get("avatar")):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("What is up?"):
# Display user message in chat message container
with st.chat_message("user", avatar=user_avator):
st.markdown(prompt)
real_prompt = combine_history(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": user_avator})
with st.chat_message("robot", avatar=robot_avator):
message_placeholder = st.empty()
for cur_response in generate_interactive(
model=model,
tokenizer=tokenizer,
prompt=real_prompt,
additional_eos_token_id=103028,
**asdict(generation_config),
):
# Display robot response in chat message container
message_placeholder.markdown(cur_response + "▌")
message_placeholder.markdown(cur_response) # pylint: disable=W0631
# Add robot response to chat history
st.session_state.messages.append(
{"role": "robot", "content": cur_response, "avatar": robot_avator} # pylint: disable=W0631
)
internlm_accelerator.empty_cache()
if __name__ == "__main__":
main()