forked from openvinotoolkit/training_extensions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
214 lines (169 loc) · 8.16 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from __future__ import print_function
import argparse
import json
import os
import pickle
import cv2
import tensorflow as tf
from utils.helpers import load_module
from ssd_detector.readers.object_detector_json import ObjectDetectorJson
from ssd_detector.trainer import create_session, detection_model, InputInferData, InputValData
def parse_args():
parser = argparse.ArgumentParser(
description='Perform inference of a detection model on a video file or an annotation file in JSON format')
parser.add_argument('path_to_config', help='Path to a config.py')
input_type_group = parser.add_mutually_exclusive_group(required=True)
input_type_group.add_argument('--json', dest='input_type', action='store_const', const='json',
help='Get images from annotation file in JSON format')
input_type_group.add_argument('--video', dest='input_type', action='store_const', const='video',
help='Get images from video file')
input_type_group.set_defaults(input_type='json')
parser.add_argument('--input', help='Path to the input file', required=True)
parser.add_argument('--conf_threshold', type=float, help='Confidence threshold for detector', default=0.1)
dump_to_json_group = parser.add_mutually_exclusive_group()
dump_to_json_group.add_argument('--dump-to-json', dest='dump_to_json', action='store_true')
dump_to_json_group.add_argument('--no-dump-to-json', dest='dump_to_json', action='store_false')
dump_to_json_group.set_defaults(dump_to_json=True)
show_group = parser.add_mutually_exclusive_group()
show_group.add_argument('--show', dest='show', action='store_true')
show_group.add_argument('--no-show', dest='show', action='store_false')
show_group.set_defaults(show=False)
dump_output_video_group = parser.add_mutually_exclusive_group()
dump_output_video_group.add_argument('--dump-to-video', dest='dump_output_video', action='store_true')
dump_output_video_group.add_argument('--no-dump-to-video', dest='dump_output_video', action='store_false')
dump_output_video_group.set_defaults(dump_output_video=False)
parser.add_argument('--path_to_output_video', help='Path to output video with predictions', default='output.avi')
return parser.parse_args()
# pylint: disable=too-many-locals
def process_image(predictions, img_size, img_id, conf_threshold, classes):
img_width, img_height = img_size
coco_detections = []
for prediction in predictions:
det_label = int(prediction[0])
det_conf = float(prediction[1])
if conf_threshold and det_conf < conf_threshold:
continue
top_left_x = float(prediction[2] * img_width)
top_left_y = float(prediction[3] * img_height)
bottom_right_x = float(prediction[4] * img_width)
bottom_right_y = float(prediction[5] * img_height)
if det_label >= len(classes):
print('Wrong label: {0}'.format(det_label))
exit(1)
obj_width = round(bottom_right_x - top_left_x, 1)
obj_height = round(bottom_right_y - top_left_y, 1)
coco_det = dict()
coco_det['image_id'] = img_id
coco_det['category_id'] = det_label
coco_det['bbox'] = [round(top_left_x, 1), round(top_left_y, 1), obj_width, obj_height]
coco_det['score'] = det_conf
coco_detections.append(coco_det)
return coco_detections
def draw_detections(img, coco_detections):
for det in coco_detections:
x, y, width, height = det['bbox'] # pylint: disable=invalid-name
top_left = (int(x), int(y))
bottom_right = (int(x + width), int(y + height))
cv2.rectangle(img, top_left, bottom_right, (255, 0, 0), 2)
cv2.putText(img, '{0}: {1}'.format(det['category_id'], det['score']), top_left,
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
return img
# pylint: disable=too-many-arguments
def predict_on_video(predictions, path_to_video, classes, show=False, conf_threshold=None, dump_output_video=False,
path_to_output_video='output.avi'):
output = []
cap = cv2.VideoCapture(path_to_video)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
fps = cap.get(cv2.CAP_PROP_FPS)
if dump_output_video:
out = cv2.VideoWriter(path_to_output_video, fourcc, fps, (int(width), int(height)))
for i, pred in enumerate(predictions):
if cap.isOpened():
_, frame = cap.read()
det = process_image(pred[:, 1:], (width, height), i, conf_threshold, classes)
output.extend(det)
img = draw_detections(frame, det)
if show:
cv2.imshow('detections', img)
key = cv2.waitKey(10)
if key == 27:
break
if dump_output_video:
out.write(img)
else:
break
cap.release()
if dump_output_video:
out.release()
return output
def predict_on_json(predictions, annotation_path, classes, show=False, conf_threshold=None, dump_output_video=False,
path_to_output_video='output.avi', width=640, height=480, fps=30):
annotation_generator, _ = ObjectDetectorJson.json_iterator(annotation_path, classes)
annotation_data = [pickle.loads(x) for x in annotation_generator()]
output = []
if dump_output_video:
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(path_to_output_video, fourcc, fps, (int(width), int(height)))
for i, pred in enumerate(predictions):
annotation = annotation_data[i]
image_size = annotation['image_size']
img_path = annotation['image']
img_id = annotation['image_id']
det = process_image(pred[:, 1:], image_size, img_id, conf_threshold, classes)
output.extend(det)
frame = cv2.imread(img_path)
frame = cv2.resize(frame, tuple(image_size))
img = draw_detections(frame, det)
if show:
cv2.imshow('detections', img)
key = cv2.waitKey(10)
if key == 27:
break
if dump_output_video:
img_resized = cv2.resize(img, (width, height))
out.write(img_resized)
if dump_output_video:
out.release()
return output
def infer(config, source, path, conf_threshold=None, dump_to_json=False,
show=False, dump_output_video=False, path_to_output_video='output.avi'):
session_config = create_session(config, 'infer')
out_dir = os.path.join(config.MODEL_DIR, config.infer.out_subdir)
if not os.path.exists(out_dir):
os.mkdir(out_dir)
run_config = tf.estimator.RunConfig(session_config=session_config)
config.detector_params['log_dir'] = config.MODEL_DIR
predictor = tf.estimator.Estimator(model_fn=detection_model,
params=config.detector_params, model_dir=config.MODEL_DIR, config=run_config)
checkpoint_path = tf.train.latest_checkpoint(config.MODEL_DIR)
basename = os.path.basename(path)
filename = os.path.splitext(basename)[0]
name = '{0}.json'.format(filename)
output_json_path = os.path.join(out_dir, name)
if source == 'video':
input_data = InputInferData(path, config.input_shape, config.infer.batch_size)
elif source == 'json':
input_data = InputValData(batch_size=config.infer.batch_size, input_shape=config.input_shape, json_path=path,
classes=config.classes,
num_parallel_calls=config.infer.execution.transformer_parallel_calls,
prefetch_size=config.infer.execution.transformer_prefetch_size)
predictions = predictor.predict(input_fn=input_data.input_fn, checkpoint_path=checkpoint_path)
if source == 'video':
predictions = predict_on_video(predictions, path, config.classes, show, conf_threshold, dump_output_video,
path_to_output_video)
elif source == 'json':
predictions = predict_on_json(predictions, path, config.classes, show, conf_threshold, dump_output_video,
path_to_output_video)
if dump_to_json:
with open(output_json_path, 'w') as output_file:
json.dump(predictions, output_file, sort_keys=True, indent=4)
def main(_):
args = parse_args()
cfg = load_module(args.path_to_config)
infer(cfg, args.input_type, args.input, args.conf_threshold, args.dump_to_json, args.show,
args.dump_output_video, args.path_to_output_video)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run(main)