-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathSB3_learning.py
348 lines (299 loc) · 14.8 KB
/
SB3_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import gymnasium as gym
import stable_baselines3
from stable_baselines3 import DQN
from stable_baselines3 import PPO, SAC
from stable_baselines3 import HerReplayBuffer
from sb3_contrib import RecurrentPPO
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.callbacks import BaseCallback, CheckpointCallback, CallbackList
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.results_plotter import load_results, ts2xy
from stable_baselines3.common.vec_env import SubprocVecEnv, VecMonitor
# from stable_baselines3.common.logger
import auv_env
import torch
import numpy as np
from numpy import linalg as LA
import csv
import argparse
from policy_net import SEED1, set_seed, CustomCNN
# tools
import os
import datetime
from metadata import METADATA
current_time = datetime.datetime.now()
time_string = current_time.strftime('%m-%d_%H')
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--choice', choices=['0', '1', '2', '3', '4'], help='0:train; 1:keep train; 2:eval; 3:test',
default=0)
parser.add_argument('--env', help='environment ID', type=str, default='TargetTracking1')
parser.add_argument('--render', help='whether to render', type=int, default=0)
parser.add_argument('--record', help='whether to record', type=int, default=0)
parser.add_argument('--ros', help='whether to use ROS', type=int, default=0)
parser.add_argument('--map', help='choose your map in holoocean', type=str, default='TestMap')
parser.add_argument('--nb_targets', help='the number of targets', type=int, default=1)
parser.add_argument('--nb_envs', help='the number of env', type=int, default=6)
parser.add_argument('--log_dir', help='a path to a directory to log your data', type=str,
default='./models/dqn_cnn-' + time_string + '/')
# parser.add_argument('--map', type=str, default="obstacles02")
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--max_episode_step', type=int, default=200)
args = parser.parse_args()
if args.render:
METADATA['render'] = True
else:
METADATA['render'] = False
class SaveOnBestTrainingRewardCallback(BaseCallback):
"""
Callback for saving a model (the check is done every ``check_freq`` steps)
based on the training reward (in practice, we recommend using ``EvalCallback``).
:param check_freq: (int)
:param log_dir: (str) Path to the folder where the model will be saved.
It must contains the file created by the ``Monitor`` wrapper.
:param verbose: (int)
"""
def __init__(self, check_freq: int, log_dir: str, save_path: str, verbose=1):
super(SaveOnBestTrainingRewardCallback, self).__init__(verbose)
self.check_freq = check_freq
self.log_dir = log_dir
self.save_path_best = os.path.join(save_path, 'best_model')
self.path_process = save_path
self.best_mean_reward = -np.inf
def _init_callback(self) -> None:
# Create folder if needed
if self.save_path_best is not None:
os.makedirs(self.save_path_best, exist_ok=True)
def _on_step(self) -> bool:
if self.n_calls % self.check_freq == 0:
# Retrieve training reward
x, y = ts2xy(load_results(self.log_dir), 'timesteps')
if len(x) > 0:
# Mean training reward over the last 100 episodes
mean_reward = np.mean(y[-100:])
if self.verbose > 0:
print("Num timesteps: {}".format(self.num_timesteps))
print(
"Best mean reward: {:.2f} - Last mean reward per episode: {:.2f}".format(self.best_mean_reward,
mean_reward))
# New best model, you could save the agent here
if mean_reward > self.best_mean_reward:
self.best_mean_reward = mean_reward
# Example for saving best model
if self.verbose > 0:
print("Saving new best model to {}".format(self.save_path_best))
self.model.save(self.save_path_best)
# # save model every 100000 timesteps:
# if self.num_timesteps % (20000) == 0:
# # Retrieve training reward
# path = self.path_process + str(self.num_timesteps) + '_model'
# self.model.save(path)
return True
def main():
if args.choice == '0' or args.choice == '1':
# new training
log_dir = '../log/sac_' + time_string + '/'
model_dir = '../models/sac_' + time_string + '/'
# keep training
# model_dir = "../models/sac_04-01_18/"
# log_dir = "../log/sac_04-01_18/"
model_name = "120000_model"
monitor_dir = log_dir
os.makedirs(monitor_dir, exist_ok=True)
# env = Monitor(env, monitor_dir)
env = SubprocVecEnv([lambda: auv_env.make(args.env,
render=args.render,
record=args.record,
ros=args.ros,
directory=model_dir,
num_targets=args.nb_targets,
map=args.map,
is_training=True,
t_steps=args.max_episode_step
) for _ in range(args.nb_envs)])
env = VecMonitor(env, monitor_dir)
set_seed(41)
if args.choice == '0':
learn(env, model_dir, log_dir)
if args.choice == '1':
keep_learn(env, model_dir, log_dir, model_name)
elif args.choice == '2':
# model_dir = '/home/dell-t3660tow/Documents/RL/RL_AUV_tracking/models/sac_04-06_18/rl_model_720000_steps.zip'
model_dir = '/home/dell-t3660tow/Documents/RL/RL_AUV_tracking/models/sac_04-29_13/rl_model_480000_steps.zip'
evaluate(model_dir)
elif args.choice == '3':
env_test()
elif args.choice == '4':
model_dir = ''
eval_greedy(model_dir)
def learn(env, model_dir, log_dir):
# 获取当前时间
os.makedirs(log_dir, exist_ok=True)
callback = SaveOnBestTrainingRewardCallback(check_freq=5000, log_dir=log_dir, save_path=model_dir)
checkpoint_callback = CheckpointCallback(
save_freq=max(120000 // args.nb_envs, 1),
save_path=model_dir,
name_prefix="rl_model",
save_replay_buffer=True,
save_vecnormalize=True,
)
callback = CallbackList([callback, checkpoint_callback])
# 网络架构选择
# policy_kwargs = dict(net_arch=[256, 256, 256]) # 设置网络结构为3层256节点的感知机
policy_kwargs = dict(net_arch=dict(pi=[256, 256, 256], qf=[256, 256])) # set for off-policy network
# policy_kwargs = dict(
# features_extractor_class=CustomCNN,
# features_extractor_kwargs=dict(features_dim=512),
# net_arch=[512, 512]
# # net_arch=[dict(pi=[512, 512], vf=[512, 512])], # for AC policy
# # shared_lstm=True, # use for RNNPPO
# # enable_critic_lstm=False # use for RNNPPO
# ) # 设置网络结构为自定义的网络架构(支持自定义输入)
# 算法选择
# DQN
# model = DQN("MlpPolicy", env, policy_kwargs=policy_kwargs, verbose=1, learning_rate=0.0001, buffer_size=10000,
# batch_size=64, target_update_interval=50, tensorboard_log=("./log/DQN_" + time_string), device="cuda",
# exploration_fraction=0.8, exploration_initial_eps=1.0, exploration_final_eps=0.4, seed=41)
# model = DQN("CnnPolicy", env, policy_kwargs=policy_kwargs, verbose=1, learning_rate=0.0001, buffer_size=10000,
# batch_size=64, target_update_interval=50, tensorboard_log=("./log/DQN_" + time_string), device="cuda",
# exploration_fraction=0.8, exploration_initial_eps=1.0, exploration_final_eps=0.4, seed=41)
# model = DQN.load("./models/dqn_cnn-2023-12-02_18/final_model.zip", device='cuda', env=env)
# PPO
# model = PPO("MlpPolicy", env, verbose=1, learning_rate=0.0001, batch_size=200, n_epochs=10,
# gae_lambda=0.9, clip_range=0.2, ent_coef=0.1, vf_coef=0.5, target_kl=0.02,
# policy_kwargs=policy_kwargs, tensorboard_log=log_dir, device="cuda")
model = SAC("MlpPolicy", env, verbose=1, learning_rate=0.0001, buffer_size=200000,
learning_starts=100, batch_size=128, tau=0.005, gamma=0.99, train_freq=1,
gradient_steps=1, action_noise=None,
policy_kwargs=policy_kwargs, tensorboard_log=log_dir, device="cuda"
)
# model = PPO("CnnPolicy", env, policy_kwargs=policy_kwargs, verbose=1, learning_rate=0.001, clip_range=0.1,
# clip_range_vf=0.1,
# batch_size=64, tensorboard_log=("./log/PPO_" + time_string), device="cuda")
# model = PPO.load("./models/dqn_cnn-2023-12-02_18/final_model.zip", device='cuda', env=env)
# model = RecurrentPPO("CnnLstmPolicy", env, policy_kwargs=policy_kwargs, verbose=1,
# learning_rate=0.001, clip_range=0.2, batch_size=64,
# tensorboard_log=("./log/PPO_LSTM_" + time_string), device="cuda")
model.learn(total_timesteps=1000000, tb_log_name="first_run", log_interval=5, callback=callback)
model.save(args.log_dir + 'final_model')
def keep_learn(env, model_dir, log_dir, model_name):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
callback = SaveOnBestTrainingRewardCallback(check_freq=5000, log_dir=log_dir, save_path=model_dir)
model = SAC.load(model_dir + model_name, device='cuda', env=env,
custom_objects={'observation_space': env.observation_space, 'action_space': env.action_space})
model.learn(total_timesteps=1000000, tb_log_name="second_run", reset_num_timesteps=False,
log_interval=5, callback=callback)
model.save(model_dir + 'final_model')
def evaluate(model_dir):
"""
2
:param model_dir:
:return:
"""
from metadata import TTENV_EVAL_SET
# 0 tracking 1 discovery 2 navagation
METADATA.update(TTENV_EVAL_SET[0])
env = auv_env.make(args.env,
render=args.render,
record=args.record,
ros=args.ros,
directory=model_dir,
num_targets=args.nb_targets,
map=args.map,
eval=True,
is_training=False,
t_steps=args.max_episode_step
)
# get render parmater true
# model = PPO.load(model_dir, device='cuda', env=env,
# custom_objects={'observation_space': env.observation_space, 'action_space': env.action_space})
model = SAC.load(model_dir, device='cuda', env=env,
custom_objects={'observation_space': env.observation_space, 'action_space': env.action_space})
# model = DQN.load("./models/dqn_cnn-2023-12-01_14/final_model.zip", device='cuda')
obs, _ = env.reset()
for _ in range(500):
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, _, inf = env.step(action)
for i in range(10):
# init the eval data
prior_data = [] # sigma t+1
posterior_data = [] # sigma t+1|t
observed = []
is_col = []
obs, _ = env.reset()
for _ in range(200):
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, _, inf = env.step(action)
prior_data.append(-np.log(LA.det(env.env.env.world.belief_targets[0].cov)))
posterior_data.append(-np.log(LA.det(env.env.env.world.record_cov_posterior[0])))
observed.append(env.env.env.world.record_observed[0])
is_col.append(env.env.env.world.is_col)
# 对于列表
with open('../data_record/greedy_comparion_l/model_l_'+str(METADATA['lqr_l_p'])+'_'+str(i+1)+'.csv', 'w', newline='') as file:
writer = csv.writer(file)
# 遍历列表并写入数据
for j in range(len(prior_data)):
writer.writerow([prior_data[j], posterior_data[j], observed[j], is_col[j]])
def eval_greedy(model_dir):
"""
4
:param model_dir:
:return:
"""
from metadata import TTENV_EVAL_SET
# 0 tracking 1 discovery 2 navagation
METADATA.update(TTENV_EVAL_SET[0])
env = auv_env.make(args.env,
render=args.render,
record=args.record,
ros=args.ros,
directory=model_dir,
num_targets=args.nb_targets,
map=args.map,
eval=True,
is_training=False,
t_steps=args.max_episode_step
)
from auv_baseline.greedy import Greedy
greedy = Greedy(env.env.env)
for i in range(10):
# init the eval data
prior_data = [] # sigma t+1
posterior_data = [] # sigma t+1|t
observed = []
is_col = []
obs, _ = env.reset()
for _ in range(200):
action = greedy.predict(obs)
obs, reward, done, _, inf = env.step(action)
prior_data.append(-np.log(LA.det(env.env.env.world.belief_targets[0].cov)))
posterior_data.append(-np.log(LA.det(env.env.env.world.record_cov_posterior[0])))
observed.append(env.env.env.world.record_observed[0])
is_col.append(env.env.env.world.is_col)
# 对于列表
with open('../data_record/greedy_comparion_l/greedy_500_l_'+str(METADATA['lqr_l_p'])+'_'+str(i+1)+'.csv', 'w', newline='') as file:
writer = csv.writer(file)
# 遍历列表并写入数据
for j in range(len(prior_data)):
writer.writerow([prior_data[j], posterior_data[j], observed[j]])
def env_test():
"3"
model_dir = '../models/test'
env = auv_env.make(args.env,
render=args.render,
record=args.record,
ros=args.ros,
directory=model_dir,
num_targets=args.nb_targets,
map=args.map,
eval=True,
is_training=False,
t_steps=args.max_episode_step
)
obs, _ = env.reset()
while True:
action = env.action_space.sample()
print(action)
action = np.array([0.0, 0.5, 0.5])
obs, reward, done, _, inf = env.step(action)
if __name__ == "__main__":
main()